Evaluation of Alternative Aptitude Area (AA) Composites and Job Families for Army Classification Tirso Diaz, Michael Ingerick, and Mary Ann Lightfoot Human Resources Research Organization United States Army Research Institute for the Behavioral and Social Sciences 20050216 182 **DECEMBER 2004** Approved for public release; distribution is unlimited. #### U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES # A Directorate of the Department of the Army Deputy Chief of Staff, G1 ZITA M. SIMUTIS Director Research accomplished under contract for the Department of the Army Human Resources Research Organization Technical review by Peter J. Legree, U.S. Army Research Institute Peter Greenston, U.S. Army Research Institute #### **NOTICES** **DISTRIBUTION:** Primary distribution of this Study Report has been made by ARI. Please address correspondence concerning distribution of reports to: U.S. Army Research Institute for the Behavioral and Social Sciences, Attn: AHRC-ARI-PO 2511 Jefferson Davis Highway, VA 22202-3926. **FINAL DISPOSITION:** This Study Report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences. | | • | REPORT | DOCUMENTA | TION PAGE | | | | |--|---|--|---|--|--|--|--| | REPORT DATE December 200 | | 2. REPORT TO | /PE | 3. DATES COVERED February 2001- | | | | | 4. TITLE AND SUE | | | . 17.1 | 5a. CONTRACT OR
DASW01-98-D | GRANT NUMBER
-0047/Delivery Order 0030 | | | | Evaluation of Alt
Families for Arm | ternative Aptitude
by Classification | Area (AA) Compo | osites and Job | 5b. PROGRAM ELE
665803 | MENT NUMBER | | | | 6. AUTHOR(S) | | | | 5c. PROJECT NUME
D730 | BER | | | | | iichael Ingerick, as
search Organization | nd Mary Ann Ligh
on) | ntfoot (Human | 5d. TASK NUMBER
263 | | | | | | | | | 5e. WORK UNIT NU
C01 | IMBER | | | | 7. PERFORMING | ORGANIZATION NA | ME(S) AND ADDRE | ESS(ES) | 8. PERFORMING O
FR 04-29 | PRGANIZATION REPORT NUMBER | | | | 66 Canal Cen | irces Research Or
ter Plaza, Suite 40
'irginia 22314 | | | | | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | 10. MONITOR ACRONYM ARI | | | | | | Davis Highway | the Behavioral a | nd Social Sciences | 11. MONITOR REPORT NUMBER Study Report 2005-01 | | | | | 1 | VAVAILABILITY STA | | | | | | | | Approved for pu | blic release; distrib | ution is unlimited | | | | | | | 13. SUPPLEMENT | | | Subject Metter Eves | ort: Pater Greenston | | | | | Contracting Offi | cer's Technical R | epresentative and | Subject Matter Expe | pert: Peter Greenston. | | | | | Effective Janu
ASVAB battery.
colleagues develo
research funded b
the overall classifi | With support from to
ped these composite
y ARI and conducted
ication and assignm | adopted a set of nine U.S. Army Reses as part of a propod by Zeidner, Johnsent of Army person | earch Institute for the I
used two-tiered classifi
son, and others demon
nel to entry-level jobs | Behavioral and Social cation system. This c strating that the propo | mated weights for a seven subtest Sciences (ARI), Zeidner, Johnson, and change was motivated by a program of osed system could significantly improve and corresponding job families, to meet | | | | the Army's classif
composites and ac
efficiency as mea | fication objectives.
ecompanying job fa
sured by mean pred | More specifically, to milies, particularly to icted performance to the mance of | the present study tested
the 17 and 150 relative
(MPP). For both scier | d the stability and diffictory to the 9 AAs, and the cities and practical real | erential validity of the proposed AA eir practical effects on classification sons, the findings suggest the continued is developed by Zeidner and colleagues. | | | | 15. SUBJECT TE
Military Per | | on; Aptitude Area | (AA) Composites; A | rmed Services Voca | ational Aptitude Battery (ASVAB) | | | | SECU | RITY CLASSIFICATI | ON OF | 19. LIMITATION OF ABSTRACT | 20. NUMBER
OF PAGES | 21. RESPONSIBLE PERSON Ellen Kinzer | | | | 16. REPORT
Unclassified | 17. ABSTRACT
Unclassified | 18. THIS PAGE
Unclassified | Unlimited | | Technical Publication Specialist 703/602-8047 | | | #### Study Report 2005-01 ## **Evaluation of Alternative Aptitude Area (AA) Composites and Job Families for Army Classification** Tirso Diaz, Michael Ingerick, and Mary Ann Lightfoot Human Resources Research Organization ### Selection and Assignment Research Unit Michael G. Rumsey, Chief U.S. Army Research Institute for the Behavioral and Social Sciences 2511 Jefferson Davis Highway, Arlington, Virginia 22202-3926 December 2004 Army Project Number 20465803D730 Personnel and Training Analysis Activities Approved for public release; distribution is unlimited. #### **FOREWORD** Assigning tens of thousands of Army recruits per year to the jobs for which they are best suited and in a way that maximizes aggregate Soldier performance represents a major goal for the Army. The U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) has a long history of conducting and supporting research aimed at improving the Army's selection and classification process. Effective January 2002, the Army adopted a set of nine Aptitude Area (AA) composites, to select and classify recruits into entry-level jobs, utilizing weights derived from Soldier performance data (circa 1989). Relative to the composites they replaced, the new composites are more defensible with their reliance upon actual performance data, and they make use of the entire profile of aptitude information available for each recruit. The current study aimed to independently evaluate the efficacy of these new composites as well as alternative AA composites to meet the Army's classification objectives. More specifically, the present study tested the stability and relative uniqueness of several alternative AA composite / job family structures, and their practical effects on classification efficiency. For both scientific and practical reasons, the findings recommend the continued operational use of the nine (standardized) AA composites and do not support the use of a larger number of composites / job families. These findings have been briefed to the Enlisted Accessions Division, G-1 and, in effect, represent a pull-back of recommendations based on earlier research for increasing the number of composites/job families. MICHELLE SAMS Technical Director Wa Das #### **ACKNOWLEDGEMENTS** The authors thank Dr. Joseph Zeidner, Mr. Cecil Johnson and, in particular, Dr. Yefim Vladimirsky, for making available their original computer programs and related data files and for responding to our inquiries in a timely fashion. ### EVALUATION OF ALTERNATIVE APTITUDE AREA (AA) COMPOSITES AND JOB FAMILIES FOR ARMY CLASSIFICATION #### **EXECUTIVE SUMMARY** #### Research Requirement: To select and classify recruits to jobs, the Army employs nine Aptitude Area (AA) composites. Effective January 2002, the Army adopted a new set of nine AA composites based on empirically estimated regression weights. Developed by Zeidner, Johnson, and colleagues (Zeidner, Johnson, Vladimirsky, & Weldon, 2000, 2001) with support from ARI, these regression-weighted composites were part of a proposed two-tiered classification system designed to substantially
enhance the classification potential of the Army's AA composites. In an earlier report (Diaz, Ingerick, & Lightfoot, 2003) we independently replicated Zeidner, Johnson, and colleagues' method of empirically deriving AA composites, including the 9 AA composites currently in operational use. The primary purpose of the current study was to evaluate the efficacy of the proposed AA composites, and corresponding job families, to meet the Army's classification objectives. Specifically, the present study tested the stability and differential validity of the proposed AA composites and accompanying job families, particularly the 17 and 150 relative to the nine AAs, and their practical effects on classification efficiency, as measured by mean predicted performance (MPP). #### Method: To assess the aforementioned issues, we conducted three major sets of analyses. The first set was exploratory and descriptive and aimed to evaluate the stability and reliability of the 9, 17, and 150 composites. The second set was likewise exploratory in nature and focused on assessing the differential validity present in the 9 and 17 test composites. Specifically, these analyses tested between-job differences in both composite validities and predicted performance scores. The third and final set of analyses had two objectives: (1) to jointly assess the practical effects of stability and differential validity on MPP; and (2) to determine the effects of composite estimation method on MPP, and more operationally, on decisions based upon MPP. #### Findings: Overall, our findings supported the continued use of the standardized AA composites based on the 9 job families proposed by Zeidner, Johnson, and colleagues, which are currently in operational use when assigning recruits to entry-level MOS. We recommended these composites over the 17 and 150 AA composites for two reasons. First, consistent with previous research (Zeidner et al., 2003b), moving from 9 to 17 AA composites did not produce a practically significant increment in either overall MPP or MPP by MOS. Second, and more importantly, the 9 AA composites based on standardized weights displayed operationally desirable properties relative to unstandardized composites. Specifically, standardized composites are expected to more effectively balance the optimization of aggregate Soldier performance with the need to satisfy equally important, practical requirements. In conclusion, when coupled with the administrative costs and other management-related issues associated with changing existing composites / job families and cut scores, the technical and/or practical advantages to adopting the 17 or 150 AA test composites, as currently constructed, are minimal. #### Use of Findings: The present findings, in conjunction with those of the first report (Diaz et al., 2003), support the 9 AA composites currently in operational use. # EVALUATION OF ALTERNATIVE APTITUDE AREA (AA) COMPOSITES AND JOB FAMILIES FOR ARMY CLASSIFICATION #### CONTENTS | | Page | |--|------| | NTRODUCTION | 1 | | Background | 1 | | Purpose of Report | 1 | | OVERVIEW OF ZEIDNER, JOHNSON, AND COLLEAGUES' PROPOSED TWO-
LIERED CLASSIFICATION SYSTEM | 3 | | PRELIMINARY INVESTIGATION OF APTITUDE AREA (AA) COMPOSITES AND
JOB FAMILY STRUCTURE: ISSUES OF STABILITY AND DIFFERENTIAL
VALIDITY | | | Stability of Proposed Aptitude Area (AA) Composites | 6 | | Overview of Zeidner and Colleagues' Method for Deriving Regression-Weighted AA Composites | | | Results of Exploratory Analyses Describing the Stability of the Proposed Test Composites | | | Differential Validity of Proposed Job Family Structure | 14 | | Overview of Zeidner and Colleagues' Method for Constructing Job Families | 14 | | Evaluating the Practical Effects of Composite Stability and Job Family Structure on | | | Classification Efficiency: An Integrated Analysis Estimating MPP: Implications for Operational Decisions Involving the Proposed | | | Composites and Joh Families | 21 | | Method | 23 | | Summary of Results | 31 | | Discussion | 31 | | Recommendations | 33 | | Suggestions for Future Research | 33 | | Conclusion | 34 | | DEFERENCES | | | CONTENTS (Continu | ued) | |-------------------|------| |-------------------|------| | | Page | |---|----------------| | APPENDIX A: IDENTIFYING WEAK TEST COMPOSITES BY JOB FAMILY | A-1 | | APPENDIX B: DIFFERENCES IN PREDICTED PERFORMANCE SCORES BY JOB FAMILY | B-1 | | APPENDIX C: SAS PROGRAMS FOR RUNNING K-FOLD DOUBLE CROSS-
VALIDATION DESIGN FOR ESTIMATING MPP | C-1 | | APPENDIX D: PLOTTING OF MEAN MPP AND STANDARD ERROR BY MOS | D-1 | | APPENDIX E: MEAN MPP AND STANDARD ERROR BY MOS | E-1 | | APPENDIX F: DOCUMENTATION OF CUT SCORE EQUATING PROCEDURE, SAS PROGRAM, AND TABLES OF CUT SCORES FOR 17 AND 150 JOB FAMILIES | | | List of Tables | | | Table 1: Number (and Percentage) of Job Families with Non-Significant Weights and Composites by ASVAB Subtest and Job Family Configuration | g | | Table 2: Number (and Percentage) of Job Families with Non-Significant Weights within their Respective Composite by Job Family Configuration | | | Table 3: Number (and Percentage) of Job Families with Weights Involved in Harmful Collinearity (HC) and Short Data (SD) Problem by ASVAB Subtest and Job Family Configuration | | | Table 4: Results of Individual ANCOVAs by ASVAB Subtest and Job Family Configuration | 17 | | Table 5: Differences in Predicted Performance Scores by Job Family | 18 | | Table 6: Comparison of Distance Statistics Across 9 and 17 Job Family Configurations | 19 | | Table 7: Summary of Conditions in 3 x 2 x 2 Design | 24 | | Table 8: Results of Analysis of Variance (ANOVA) of Overall MPP | 2 6 | | Table 9: Summary of Simple Effects of Job Family Configuration on Overall MPP by Condition | 29 | | Table 10: 95% Confidence Intervals Around Estimated Overall MPP by Job Family Configuration and Condition | 29 | #### INTRODUCTION #### Background Aptitude Areas (AA) are critical features of the Army's personnel management system. For more than 50 years, AAs have served two essential functions. First, AAs structure and meaningfully organize entry-level jobs, grouping jobs with similar aptitude requirements into families. These families inform macro-level career field and accession management decisions, with the aim of ensuring a steady pipeline of accessions for fulfilling both short-term and strategic mission requirements. The second function served by AAs is that each defines a tailored composite, which represents a differentially weighted function of aptitudes and skills required for successful performance in a targeted set of jobs. Operationally, these composites produce the scores used to make a wide range of personnel decisions, from setting entry-level cut-scores to matching new recruits to jobs to counseling exiting Soldiers on civilian jobs commensurate with their skills an vilities. First developed in 1949, AAs have since undergone periodic changes in number and content. From the early 1970s until recently, the Army employed a system of nine AAs. At the core of this system were unit-weighted composites, whose weights (0, 1) were meant to reflect the relative importance of different cognitive aptitudes and abilities (e.g., verbal ability, coding speed, mechanical comprehension) in determining job performance within a family of jobs (e.g., Clerical, Combat, Field Artillery). Starting in January 2002, the Army replaced the unitweighted composites with a new set of nine AA composites based on empirically estimated regression weights derived from criterion-related validities for the Armed Services Vocational Aptitude Battery (ASVAB) (Greenston, Rumsey, Zeidner, & Johnson, 2001).² With support from the Army Research Institute (ARI), Zeidner, Johnson, and colleagues developed the composites as part of a proposed two-tiered classification system intended to replace the existing AAs (see Zeidner, Johnson, Vladimirsky, & Weldon, 2000, 2001). In Zeidner, Johnson, and colleagues' original conceptualization of this system, the first tier was intended for classifying recruits to one of 150 entry-level job families. The second tier, aimed at a smaller set of job families (9 or 17), was meant for vocational counseling, recruiting, and administrative purposes. The proposed two-tiered system was based on a multi-year program of simulation research conducted by Zeidner, Johnson, and others. Results of their research indicated that the proposed two-tiered classification system (and related composites) could produce substantial gains in aggregate Soldier performance over and above that expected using the existing AAs (Johnson, Zeidner, & Leaman, 1992; Statman, 1993; Zeidner et al., 2000, 2001). #### Purpose of Report The current report is the second of two reports documenting research assessing major components of Zeidner and colleagues' proposed two-tiered AA system. The first report (Diaz, ¹ Unit weights were based on rational linkages to job content made by subject-matter-experts (SMEs). ² In descriptions of the Zeidner, Johnson, and colleagues' method, these weights are frequently referred to as least squares estimates (LSE) or LSE weights, as the weights are empirically estimated using conventional ordinary least-squares (OLS) regression. Ingerick, & Lightfoot, 2004) independently replicated the Zeidner, Johnson, and colleagues' method of empirically deriving AA composites, including the nine AA composites currently in operational use. The primary purpose of this second report is to summarize research evaluating the efficacy of the proposed AA system to meet the Army's classification objectives. More specifically, the goals of
this research were to: - 1. Evaluate the stability and classification potential of the proposed AA composites, particularly the 17 and 150 relative to the 9 AAs. - 2. Evaluate the proposed job family structures comprising the two-tiered system (9, 17, and 150), including the potential identification of alternative job family structures displaying greater classification efficiency. - 3. Review remaining issues related to implementing the proposed system. In summary, the current research aimed to appraise both the process and products (i.e., Pearlman, 1980) of the proposed AA system and its potential for operationally achieving Army classification objectives. In keeping with this goal and the recommendations of other classification researchers (Pearlman, 1980; Sackett, 1988), we placed special emphasis on external and practical criteria, specifically classification efficiency, when evaluating the system. This report is organized as follows. First, we review the underlying conceptual basis and describe the major components of Zeidner, Johnson, and colleagues' proposed system, and its current operational version. Second, we summarize and discuss our results from a preliminary investigation of: (a) the stability of the proposed regression-weighted AA composites; and (b) the differential validity of the proposed job family structures (9, 17, and 150). Both composite-test stability and the differential validity of proposed job families have implications for the classification potential of the proposed two-tiered system. Third, we summarize our findings from a comprehensive, empirical analysis designed to integrate these two issues. Specifically, this joint analysis assesses the effects of composite stability and differential validity on the classification efficiency of the proposed AA system.³ Fourth, and finally, we conclude the report with a brief review of major findings, a discussion of remaining implementation issues, and suggestions for future research. ³ Consistent with Zeidner, Johnson, and colleagues, classification efficiency is measured using standardized mean predicted performance (MPP). MPP is an index of the average predicted job performance of n recruits expressed in standard deviation units (i.e., an average z-score). #### OVERVIEW OF ZEIDNER, JOHNSON, AND COLLEAGUES' PROPOSED TWO-TIERED CLASSIFICATION SYSTEM The underlying conceptual basis for Zeidner, Johnson, and colleagues' proposed classification system comes from Differential Assignment Theory (DAT) (Zeidner & Johnson, 1994; Zeidner, Johnson, & Scholarios, 1997). Originating with research by Horst (1954, 1955) and Brogden (1959), DAT makes two fundamental propositions. First, consistent with specific aptitude theories of intelligence, DAT postulates that people and jobs can be differentiated on the basis of specific aptitudes and abilities. Second, DAT emphasizes that within a multiple job context, such as Army classification and assignment, increasing differential validity, as opposed to incremental validity, maximizes classification efficiency. Factors that influence differential validity, and indices of differential validity, include: (a) the number of jobs (m) to which individuals can be assigned: (b) the average predictive (or criterion-related) validity of those jobs (R); and (c) intercorrelations among test composites predicting performance in those jobs (r)(Brogden, 1959; Zeidner & Johnson, 1994; Zeidner et al., 1997). Taken together, DAT posits that when assigning individuals to multiple jobs, performance for the group (as a whole) will be optimized by using a multidimensional test battery and a set of differentially-weighted composites tailored to specific job(s). The practice of matching individual skills and task requirements also has a long, informal history. The designation of the best throwers as "pitchers" in Little League, and the best catchers as "basemen", is one common example of this practice. Using DAT as a basis, and building on a multi-year program of research, Zeidner and colleagues proposed a two-tiered classification system (see Greenston et al., 2001; Zeidner et al., 2000, 2001). The two-tiered system consists of two major components: (a) differentially-weighted test composites tailored to specific jobs (or job families); and (b) groupings of jobs with comparable aptitude and performance requirements into families or Aptitude Areas (AAs). Each tier encompasses both components. As originally conceived, the first tier was intended for classifying recruits to one of 150 entry-level job families. The second tier, aimed at a smaller set of job families (9 or 17), was meant for vocational counseling, recruiting, and administrative purposes. Based on their intended purpose, classification or counseling, test composites are estimated differently. When estimating composites, weights are derived from predictive (or criterion-related) validities corrected for range restriction and criterion unreliability. Depending on the tier and the intended use of scores based on the composites, the appropriate reference population (i.e., Youth or Army Input) for making these corrections differs.⁴ For instance, corrections to the Youth population are appropriate when scores are used to determine the mental eligibility of high school seniors for Army service. Conversely, corrections to the Army Input population are most appropriate when using scores to assign recruits to entry-level jobs. In sum, the specific estimation procedure employed when deriving the weights depends on the types of decisions for which scores based on the composites are intended to support. ⁴ The Youth population represents all 18 – 23 year olds in the U.S. population. The Army Input population represents all Army recruits who pass basic service qualifications, and are therefore, eligible for assignment to entrylevel MOS. The "operational" version of the proposed two-tiered system functions somewhat differently than the version originally proposed by Zeidner and colleagues. The primary difference is that under this system, both tiers, instead of just the first tier, are used in classifying recruits to entry-level MOS. Specifically, the second tier, consisting of either 9 (or 17) AAs and corresponding test composites, is used to determine a recruit's eligibility for assignment to an MOS. Consequently, these composites, and their respective weights, are referred to as assignment (AA) composites (or AA weights). The first tier, comprised of 150 job families and corresponding composites, is used for estimating a recruit's predicted performance. First tier composites, and their respective weights, are referred to as predicted performance (PP) composites (or PP weights). Predicted performance scores are used operationally, in conjunction with AA scores, to inform decisions as to where to assign recruits, so as to optimize overall aggregate Soldier performance. Because the primary motivation for the current research is on the AA composites and corresponding job family configurations, our analyses focused on the "operational" version of the Zeidner and colleagues' two-tiered classification system and its efficacy in achieving Army classification objectives. ⁵ Those job families making-up the first tier are basically individual-level MOS. ### PRELIMINARY INVESTIGATION OF APTITUDE AREA (AA) COMPOSITES AND JOB FAMILY STRUCTURE: ISSUES OF STABILITY AND DIFFERENTIAL VALIDITY Two long-standing, albeit related, issues regarding the classification potential of regression-weighted test composites are their stability and differential validity. By stability, we are referring to the degree to which estimates, in this case OLS-derived regression weights, accurately reflect an underlying population value (i.e., are generally free of sampling error). By differential validity, we are referring to between-job family differences in: (a) the predictive (or criterion-related) validities (R) of a test composite; and (b) the degree to which test composites, and their predicted performance scores, are intercorrelated (r). In a classification context, differential validity is maximized when predictive validities differ by family and the intercorrelations among test composites are low. More importantly, when making operational decisions about the classification potential of one or more test composites, these differences should be attributable to systematic between-family differences in job content and performance requirements and *not* other extenuating factors such as estimation (i.e., sampling) or measurement error. While the implications of sampling error on personnel selection decisions are well-known in applied psychology (Hunter & Schmidt, 1990; Schmidt & Hunter, 1977), there is comparatively less attention to this issue as it pertains to classification. In the context of classification, sampling error can lead to inaccurate composite estimates, which in turn may artificially inflate (or deflate) estimates of differential validity. Practically, this means that jobs may appear to be more or less different than they actually are. When making operational decisions, this instability is likely to bias estimates of a composite's classification potential, as measures of classification effectiveness, such as mean predicted performance (MPP) are typically based on one or more indices of differential validity (see Brogden, 1959; Zeidner et al., 1997). That is, the higher the differential validity across a set of jobs, the greater will be the estimated classification potential of a set of composites specifically tailored to those jobs. However, if estimates of differential validity are biased (positively or negatively) leading to inaccurate estimates of classification potential, then decisions regarding the operational utility of a set of composites will be adversely affected. Presently, there is a long-standing debate about the degree to which regression-weighted composites tailored to specific jobs based
on test batteries assessing specialized aptitudes and abilities, such as the ASVAB, produce differences in validities that represent "true" between-job differences and not differences due to sampling error or other artifacts (Hunter, 1983, 1985; Hunter, Crosson, & Friedman, 1985; Schmidt, Hunter, & Larson, 1988; Schmidt, Hunter, & Pearlman, 1981; Zeidner & Johnson, 1994; Zeidner et al., 1997). As an initial step in evaluating the proposed AA system, we first investigated these issues. In addition to rationally examining the methods for deriving the composites and job family structures, we conducted several exploratory analyses designed to answer the following questions: 1. To what extent are both the individual regression weights making up the composites, and the composites (as a whole), stable and largely free of sampling error? ⁶ Differential validity is synonymous with differential prediction. 2. Since test composites are tailored to specific job families, to what degree do composites differ across the proposed job family configurations? That is, is there differential validity? If not, are there alternative job family configurations that might increase differential validity and, thereby, classification efficiency? We will summarize our findings for each in turn. #### Stability of Proposed Aptitude Area (AA) Composites In an earlier report (see Diaz et al., 2004), we successfully replicated Zeidner, Johnson, and colleagues' method for estimating the proposed OLS-weighted composites. In this section, we evaluate the stability of those weights. The section is organized as follows. First, we briefly review Zeidner and colleagues' method for deriving the proposed AA composites, noting its implications for composite stability and more practically, classification efficiency. Second, we summarize our findings from a series of exploratory analyses aimed at empirically assessing the stability of the proposed test composites. Overview of Zeidner and Colleagues' Method for Deriving Regression-Weighted AA Composites In general, Zeidner and colleagues' method involves estimating weights from corrected ASVAB intercorrelations and criterion-related validities using standard OLS regression. All weights are job- or AA-specific, meaning that weights are estimated separately for each MOS or a family of MOS with comparable job requirements to produce composites targeted to that specific MOS (or job family). In accordance with Differential Assignment Theory (DAT), empirically-estimated weights are expected to differ across jobs (i.e., exhibit differential validity) in meaningful ways that capture systematic job-to-job differences in content and performance requirements, just as the unit-weighted composites did with dichotomously assigned weights (0,1) based on a rational analysis of job requirements. As a result, MOS-specific composites should differentially predict Soldier performance for that MOS (or job family). Using this approach, Zeidner and colleagues derived two sets of regression-weighted test composites for use under the AA system. The first set of test composites, and their respective weights, is intended for computing AA scores to be used in determining recruit eligibility for assignment to an MOS. These composites constitute the second tier of Zeidner and colleagues' proposed two-tiered classification system. The second set of test composites, and their respective weights, is intended for computing predicted performance scores. Operationally, predicted performance scores inform assignment decisions, in conjunction with the AA scores. These weights form the first tier of the proposed two-tiered classification system. In addition to informing Army classification decisions, these scores have frequently been used by Zeidner and colleagues for basic research purposes when evaluating classification system design issues. As discussed earlier, regression-weighted composites are potentially problematic for classification purposes because regression-based estimates are sensitive to sampling error ⁷ Correlations are corrected for criterion unreliability and range restriction, as observed correlations are based on predictor-criterion data truncated by selection and classification effects. (Cohen, Cohen, Aiken, & West, 2003; Pedhauzer, 1997). This means that regression-based estimates are likely to capitalize on sample-specific variance (Hunter et al., 1985; Schmidt et al., 1988). To address this issue, Zeidner and colleagues aggregate jobs (MOS) to ensure sample sizes (ns) of 200 or greater when estimating composite weights. Estimates based on this design are expected to be generally free of error (see Zeidner et al., 2000, 2001) and, therefore, representative of the "true", underlying population values. While the aforementioned procedure should (and likely does) decrease estimation error, there are several reasons for investigating this issue more thoroughly. First, many of the sample sizes (ns) on which weights and composites are based, specifically those comprising the first-tier, still fall below recommended levels (Maxwell, 2000). While increasing nminimizes the standard errors associated with these weights, since error is inversely related to n, such increases do not completely eliminate error. This is problematic because even relatively small standard errors can distort conclusions about differential validity. For example, consider two weights for the same predictor for two different jobs, .08 (Job A) versus .11 (Job B). Assuming no error, the weight for Job B is 37.5% larger than that of Job A, suggesting that the attribute underlying the predictor is more important to the performance of Job B than Job A. Given these data, there is evidence for differential validity. Now, assume that the standard error associated with both weights is small, about .02. This means that the "true" weight for Job A is somewhere between .06 and .10, while the "true" weight for Job B is between .09 and .13. Given this new information, the weights now suggest two alternative, but differing, conclusions. The first is that, since there is overlap in the estimates, differential validity is close to zero because the observed difference in the weights is artifactual (i.e., due to error). The second conclusion is that the "true" weights may actually differ more than the observed difference suggests, indicating that differential validity is greater, and potentially more than double, that in the original example.8 This situation becomes especially problematic when observed weights are close to zero, since once error is taken into account this suggests that the "true" population weights are basically zero; there is no relationship between the predictor in question and job performance. Therefore, any observed differences between these weights and those that are technically non-zero, but otherwise represent small effects, are likely to be misleading. As evident from this illustration, even relatively small standard errors can adversely impact estimates and conclusions about differential validity, and more practically, classification efficiency. A cursory review of the proposed weights and composites, particularly for the first-tier based on a 150 job family configuration, shows that there are many cases: (a) where the observed differences in the weights for the same ASVAB subtest across families is sufficiently small to potentially capitalize on error; and (b) where observed weights are relatively close to zero. The second reason for further investigating the stability of the test composites is the high level of collinearity present among the predictors, the ASVAB subtests. Collinearity, or in this case multicollinearity, refers to the degree to which a set of predictors correlate with each other. ⁸ Note the same issues apply when considering differential validity as it applies to intercorrelations among the composites and corresponding predicted performance scores (r). Since correlations are biased due to sampling error, the greater the sampling error, the higher the intercorrelation among predicted performance scores (and the lower the differential validity among the composites). When multicollinearity is high, standard errors are inflated (Cohen et al., 2003; Pedhauzer, 1997). This produces a condition known as "bouncing betas", whereby the magnitude, and even the direction, of the weights changes depending on which predictors are included in the regression model. Intercorrelations among the ASVAB subtests comprising the current 7-test battery tend to be uniformly high, ranging from .41 to .83 in the Youth population (Mitchell & Hanser, 1984). When working with the Army Input population, intercorrelations among the ASVAB subtests at the MOS- and job family-level are roughly comparable in magnitude. Therefore, the level of multicollinearity present in the ASVAB subtests is likely to contribute to inflated standard errors when estimating composite weights. While increased n is associated with smaller standard errors, even large n is not expected to fully negate the influence of collinearity on regression-based estimates. In summary, additional research on test composite stability, and its implications for the proposed classification system, is needed. The sample sizes (n) employed during estimation and the multicollinearity present in the ASVAB could not only separately, but also jointly, contribute to inflated standard errors. The magnitude of these errors, even those that are relatively small, is practically important as subsequent conclusions regarding the differential validity of the test composites could be impacted. To address these issues, we conducted a series of exploratory, descriptive analyses to empirically assess the stability of the proposed test composites. All analyses were based on estimates originally derived by Zeidner, Johnson, and colleagues (Zeidner et al., 2000, 2001) and successfully replicated by Diaz et al. (2004). Estimates
were based on data contained in the Skills Qualification Test (SQT) program database. This database contains ASVAB subtest scores and standardized Skilled Qualification Test (SQT) scores for Army enlisted personnel covering FYs 1987-1989 (N = 257,810). These data were originally provided by the U.S. Army Research Institute (ARI). Results of Exploratory Analyses Describing the Stability of the Proposed Test Composites To assess the stability of the test composites and their respective weights, we conducted two sets of descriptive analyses. The first looked at the magnitude of the effect sizes associated with the composites and their respective weights to identify "weak" composites, that is composites whose weights were generally not significantly different from zero. More specifically, the purpose of these analyses was to detect test composites that, by virtue of having effect sizes not significantly different from zero, were generally unstable and thereby could be expected to bias estimates of differential validity. The second set of descriptive analyses, signal-to-noise, assessed the effects of collinearity and data truncation on the composites. Comparable to the first set of analyses, the purpose of the signal-to-noise analyses was to identify problematic composites that could substantially bias inferences about differential validity. We will summarize each in turn. *Identifying Weak Composites*. For these analyses, we took the estimated composites and their respective weights, specifically the first-tier weights for the 150 job families and the second-tier weights for the 17 and 9 job families, and calculated an applicable significance test. ⁹ These intercorrelations are used when making range restriction corrections to ASVAB-criterion validities to estimate the first-tier weights and composites. For the individual weights, we computed conventional t-tests, estimating the degree to which the observed values were significantly different from zero. For the full composites, we conducted chi-square tests of significance estimating the degree to which the test composite (as a whole) differed from zero. When conducting the tests, we considered the standard error of the weight or the composite, respectively. That is, all tests estimated the degree to which observed values were significantly different from zero, taking into account the applicable standard error. This enabled us to distinguish between those weights and composites whose difference from zero was most likely artifactual (due to error) versus those whose effect size was technically small, but otherwise stable. From these analyses, we observed the following. First, as expected, there was a strong linear relationship between sample size (n) and composite stability. Tables 1 and 2 summarize the number (and percentage) of job families exhibiting non-significant weights by job family configuration and ASVAB subtest. As evident from Tables 1 and 2, as the number of job families increased, and thereby n decreased, the number of non-significant weights, controlling for error, likewise increased. While the effects of small n were minor at the 9 and 17 job family configurations, they were most pronounced for the 150 job family configuration (see Table 2), where for 40.7% of the job families more than half of the weights making-up their respective composite were not significantly different from zero (p < .05). As confirmation of this, the relationship between n and the number of nonsignificant weights among the 150 job families was strongly negative (r=.673, p < .0001, N = 150), indicating that as n decreases, the number of non-significant weights in a test composite increases. Therefore, while weights for the 9 and 17 job family configurations are reasonably robust (i.e., significantly different from zero), this was not the case for a sizeable percentage of the 150 job families. Table 1 Number (and Percentage) of Job Families with Non-Significant Weights and Composites by ASVAB Subtest and Job Family Configuration | | | | | | | - | | Full | |-----|-----------|----------|----------|----------|----------|----------|----------|-----------| | | GS | AR | AS | MK | MC | EI | VE | Composite | | JF | N(%) | 9 | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | | 17 | 5(29.4) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | 1(5.9) | 0(0.0) | 0(0.0) | | 150 | 119(79.3) | 33(22.0) | 46(30.7) | 31(20.7) | 74(49.3) | 76(50.7) | 67(44.7) | 0(0.0) | Note. For the 9 and 17 job family configurations, results exclude weights fixed to zero because of positive constraint. Significance set at p < .05 (two-tailed). GS = General Science; AR = Arithmetic Reasoning; AS = Auto & Shop Information; MK = Mathematical Knowledge; MC = Mechanical Comprehension; EI = Electronics Information; VE = Verbal. ¹¹ For significance tests results by job family and ASVAB subtest, see Appendix A. ¹⁰ Given the n involved, these chi-square tests are equivalent to the standard overall F-test in regression. Table 2 Number (and Percentage) of Job Families with Non-Significant Weights within their Respective Composite by Job Family Configuration | | | | Number of | Non-Signific | ant Weights | | | |-----|----------|----------|-----------|--------------|-------------|----------|--------| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | JF | N(%) | 9 | 9(100.0) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | | 17 | 12(70.6) | 4(23.5) | 1(5.9) | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | | 150 | 7(4.7) | 21(14.0) | 29(19.3) | 32(21.3) | 40(26.7) | 16(10.7) | 5(3.3) | *Note*. For the 9 and 17 job family configurations, results exclude weights fixed to zero because of positive constraint. Significance set at p < .05 (two-tailed). The second trend is that composite stability was related, over and above the effects of n, to the particular ASVAB subtest and job family. As can be seen from Table 1, the GS subtest was consistently associated with small effect sizes, particularly at the 150 job family configuration, where 79.3% of the job families displayed a non-significant weight for GS. Inspection of the actual weights confirmed this, as GS repeatedly corresponded to lower effect sizes relative to the other subtests, even when weights were technically significant. At the 150 job family configuration, EI (50.7% non-significant), MC (49.3%), and VE (44.7%) also emerged as ASVAB subtests that tended to be associated with non-significant effect sizes. This suggests that: (a) the ability of some subtests to differentiate among the job families (as currently constructed) is minor; and (b) some of the observed differentiation for a large number of families at the 150 level is largely artifactual (due to error). As for individual job families, a visual inspection of plots, showing the standard errors of composite weights organized by n and ASVAB subtest for the 150 job family configuration, indicated that the magnitude of the error varied among job families with comparable n. That is, holding n and ASVAB subtest constant, some job families were associated with larger standard errors than others. This indicates that sampling error differentially affected composite estimates for the different job families, as would be expected given that the effects of sampling error are random. In sum, we identified a number of composites, mainly at the 150 job family configuration, that are weak. That is, controlling for error, there were a number of composites containing weights that were not significantly different from zero. Larger standard errors tended to be a function of: (a) low n; (b) the ASVAB subtest corresponding to the weight; and/or (c) sampling error. These findings are practically important for two reasons. First, they indicate that for a number of families at the 150-level there are few ASVAB subtests to meaningfully differentiate them from other jobs. Second, because of the number of composites that are weak, estimates of differential validity, particularly for those weights relatively close to zero, will either over- or under-estimate "true" differences between job families. Signal to Noise. We also conducted diagnostics to examine the impact of collinearity among ASVAB tests on the quality of the estimated weights of the composites using the approached described by Belsley (1988). This approach employs a signal-to-noise measure that jointly accounts for two sources of "weakness" in the data, namely, collinearity and "short data." In our diagnostics, the "signal" corresponds to the unknown population values of the composite LSE weights, while noise corresponds to error in estimating these weights. Collinearity and/or short data can lead to unstable regression weights and are directly relevant in our problem. First, the high correlations among ASVAB scores raise concerns regarding the potentially adverse effects of collinearity on the composite weights. Second, restriction in range due to sample selection is relevant to the problem of short data, which occurs when a predictor has small length (or variance). ASVAB tests that are important to the job family or MOS potentially exhibit short data problem since they are impacted most by selection-related range restriction, with estimated weights with the "wrong" sign. The following steps summarize the "weak data" diagnostic framework of Belsley (1991), as it applies to the current problem. These diagnostic steps are carried out separately at the MOS- or job family- level data. In the descriptions below, X denotes the n by seven matrix of ASVAB test scores of individuals belonging to the MOS or job family under consideration. 1. Detecting Collinearity Problem. The collinearity diagnostic is based on the indices $$\eta_k = \frac{\mu_7}{\mu_k}, k = 1, 2, ..., 7$$ where μ_k is the kth smallest singular value of X (or square-root of the kth smallest eigenvalue of X'X) and μ_7 is the maximum singular value of X. A collinearity problem exists if the largest index η_1 is
greater than 30. Note that the cut-off value 30 is the same as that typically used when identifying important dimensions in factor analysis. The number of linear dependencies (or dimension of the collinearity problem) is equal to the number of values greater than 30. Two or more subtests are involved in a linear dependency if the variances of their regression weight estimates are mostly accounted for by the same linear dependency. While collinearity can be expected to degrade regression weight estimates of subtests that are involved in the relevant linear dependencies, by itself it is not harmful. If there is a strong enough relationship between job performance criterion and ASVAB subtests, then the regression weight estimates would still be reliable. 2. Signal-To-Noise Diagnostic. The signal-to-noise diagnostic is conceptually based on $$\tau^2 = \boldsymbol{\beta}^T \left[\operatorname{var}(\boldsymbol{\beta}) \right]^{-1} \boldsymbol{\beta}$$ ¹² A distinction is made in this approach between collinearity and correlation or statistical relationship in general. Correlation is sufficient but not necessary for collinearity. A collinearity problem is characterized by near "linear dependence" among two or more predictor variables. Geometrically, these predictors form an unstable base for the regression expectation surface, which can lead to unstable weights. ¹³ Correction for range restriction that is traditionally applied to adjust selection sample correlations to a reference population values does not address the short data problem. While these two issues are not exactly equivalent, they are related. Under the same condition, when the range of a subtest is restricted, the small variance in the subtest leads to "difficulty" in estimating the subtest weight. where β is the true but unknown regression weight and β is the estimate of the regression weight with variance $var(\beta)$. ¹⁴ Computationally, the diagnostic is carried out using a test statistic, based entirely on the LSE estimate β , that is distributed as a noncentral F (see equation (7.12) on page 212 of Belsley). Conceptually, large values of the ratio τ^2 (and the test statistic) indicate that there is a sufficient signal-to-noise ratio. This arises when the unknown regression weight β is large enough, even if the variance $var(\beta)$ is inflated due to collinearity problems; large enough values also could arise even if β is small (e.g., weak criterion-subtest relationship) if the corresponding predictor variable is not involved in a collinearity problem with small $var(\beta)$. The combination of the collinearity diagnostic index and the signal-to-noise ratio triangulates the weak data problem in the following way. First, there is no weak data problem if the signal-to-noise ratio is significantly high, even in the presence of linear dependencies (i.e., η_k values above 30). Collinearities in this situation are considered not harmful. Second, if the signal-to-noise ratio is not significant, then this indicates one of two weak data problems: (1) harmful collinearity, in the presence of linear dependencies; (2) or short data, in the absence of linear dependencies. This triangulation is summarized in the table below: Presence of collinearity as indicated by collinearity diagnostic Inadequacy of signal-to-noise diagnostic | | NO | YES | |-----|----------------------|------------------------------| | NO | No weak data problem | Not harmful collinearity | | YES | Short data problem | Harmful collinearity problem | In summary, data weakness in the job performance equation estimation potentially arises from "correlated" predictor ASVAB battery and "data shortness" (or range restriction) due to sample selection. If weak data is detected then there is not enough information (or power) in the sample to conclude one way or another regarding significance or the nature of the relationship between a subtest and job performance and a larger sample may be required. Results of Weak Data Diagnostics. Table 3 summarizes the results of the weak data diagnostic analysis in terms of number of ASVAB subtests involved in harmful collinearity and short data problem by job family configuration. Overall the result of this analysis is comparable to the stability analyses above based on the usual statistical significance test on each weight. The signal-to-noise test is similar in nature to analysis of power and does not exhibit the tendency of the ordinary significance test to reject the null hypothesis of zero weight when the sample size is sufficiently large. Note that this is not the same as the usual test of significance as the unknown parameter value β instead of β appears in the numerator. The weak data diagnostics indicate that the overall quality of the 9 job family weights is good. Only GS exhibited weights that were adversely affected by collinearity or short data. Our analysis showed that GS was consistently involved in a linear dependency with VE in five out of nine job families, and AR with MK in eight out of nine job families. However, the sample sizes at the 9 job family configuration and ASVAB-criterion relationship were large enough to overcome harmful effects of collinearity and produce composite weights that could be reliably differentiated from noise. Table 3 Number (and Percentage) of Job Families with Weights Involved in Harmful Collinearity (HC) and Short Data (SD) Problem by ASVAB Subtest and Job Family Configuration | | Type of | GS | | AR | | AS | 1 | ИK | M | 1C | | ΞI | , | VE | To | otal | |--------|-----------|------------|----|--------|----|--------|----|--------|-----|---------------|-----|--------|----|--------|-----|--------| | No. JF | Weak Data | N (%) | N | | 9 | HC | 4 (44.4) | 0 | (0) | 0 | (0) | 0 | (0) | 0 | (0) | 0 | (0) | 0 | (0) | 4 | (6.3) | | | SD | 3 (33.3) | 0 | (0) | 0 | (0) | 0 | (0) | 0 | (0) | 1 | (11.1) | 0 | (0) | 4 | (6.3) | | | Total | 7 (77.8) | 0 | (0) | 0 | (0) | 0 | (0) | 0 | (0) | 1 | (11.1) | 0 | (0) | 8 | (12.7) | | 17 | HC | 7 (41.2) | 0 | (0) | 0 | (0) | 0 | (0) | 0 | (0) | 0 | (0) | 2 | (11.8) | 9 | (7.6) | | | SD | 7 (41.2) | 0 | (0) | 2 | (11.8) | 0 | (0) | 2 | (11.8) | 5 | (29.4) | 0 | (0) | 16 | (13.4) | | | Total | 14 (82.4) | 0 | (0) | 2 | (11.8) | 0 | (0) | 2 | (11.8) | 5 | (29.4) | _2 | (11.8) | 25 | (21) | | 155 | HC | 93 (60) | 52 | (33.5) | 4 | (2.6) | 44 | (28.4) | 1 | (0.6) | 3 | (1.9) | 72 | (46.5) | 269 | (24.8) | | | SD | 59 (38.1) | 33 | (21.3) | 88 | (56.8) | 31 | (20) | 115 | (74.2) | 126 | (81.3) | 27 | (17.4) | 479 | (44.1) | | | Total | 152 (98.1) | 85 | (54.8) | 92 | (59.4) | 75 | (48.4) | | <u>(74.8)</u> | 129 | | 99 | (63.9) | 748 | (68.9) | Note. GS = General Science; AR = Arithmetic Reasoning; AS = Auto & Shop Information; MK = Mathematical Knowledge; MC = Mechanical Comprehension; EI = Electronics Information; VE = Verbal. For the 17 job family configuration, the diagnostics again suggest good quality of weights overall. As in the 9 job family, the GS weights were the most adversely affected by weak data problems, with 14 out of 17 composite weights exhibiting harmful collinearity or short data. Only two additional composites, CL1 and ST2, showed weak data problems on two ASVAB subtests, AS and MC, which previously were not identified under the nine job family. The weak data diagnostics is suggesting that the subtest-criterion relationship for AS and MC simply were not strong enough in CL1 and ST2 jobs, and that under ASVAB collinearity conditions these two subtests do not play an important role for these jobs. Composite weights on the other subtests could be reliably differentiated from noise, even if some of them were involved in linear dependencies (e.g., AR and MK in 14 out of 17 job families). Diagnostics at the MOS level, which should closely approximate the 150 job family configuration, indicate weak data problems for many MOS-job families and far more ASVAB subtests than observed in the 9 and 17 job family configurations. GS weights continued to exhibit weak data problems for almost all MOS at this level, which is not surprising given earlier observations. However, all the other subtests now exhibit weak data problems for at least 48 percent of the MOS. In particular, AR and MK weights are now susceptible to the linear dependency between these two subtests, while before there was large enough sample size to overcome harmful effects of collinearity for these two subtests. The same can be observed for the other ASVAB collinearities. Overall, the number of subtests that cannot reliably be differentiated from noise for each MOS-job family, combined with the frequency of this occurrence across MOS-job families, indicate that true differential validity cannot be achieved at the MOS level; that is, many of the MOS-job families will have the same ASVAB validity pattern if we exclude subtests on each MOS-job families that are not different from noise. In summary, the weak data diagnostics indicate that composite weights at the nine and 17 job family can reliably be differentiated from noise overall. The harmful effects of ASVAB collinearity, while degrading the quality of some of the weights, were not strong enough to conclude that the differential validities and related classification properties of the composite weights are of no value. The situation is very different, however, at the 155 MOS level, where the high frequency of MOS-job family composites with weak composite weights on several subtests at the same time indicates that true differential validity is not achievable at the 155 MOS or 150 job family configuration. #### Differential Validity of Proposed Job Family Structure As described earlier, differential validity is operationalized as between-job differences in ASVAB-predictive (or criterion-related) validities (R), and as between-job differences in intercorrelations among test composites and their respective predicted
performance scores (r). For differential validity to be meaningful, these differences need to reflect systematic differences in the underlying performance requirements among the different jobs. Theoretically, differential validity is expected to increase when jobs (or job families) are substantially different from each other in terms of their actual performance requirements. As described earlier, composites are job familyspecific in that each composite seeks to maximize performance prediction for that particular MOS or family of MOS. Therefore, how job families are constructed could significantly influence the ability of the composites to differentiate between recruits' expected performance across a family of jobs. In this section, we evaluate between-family differences in the proposed composites, and their respective weights. The section is organized as follows. First, we briefly review Zeidner and colleagues' method for constructing the proposed job families, noting its implications for differential validity, and more practically, classification efficiency. Second, we summarize our findings from a series of exploratory analyses designed to assess the degree to which the job families, as currently constructed, can be meaningfully differentiated using the proposed composites. #### Overview of Zeidner and Colleagues' Method for Constructing Job Families There are a number of different methods available for clustering jobs. Zeidner and colleagues' method represents a hybrid approach. In brief, it involves clustering MOS into families empirically using the previously derived test composites. Using conventional cluster analysis procedures, MOS are allocated to families in a way that minimizes within-family differences in composites, while maximizing between-family differences. For practical and conceptual reasons, some modifications are then made to the placement of MOS within families based on a rational analysis of job content. This method has produced three alternative configurations of job families. The first consists of 150 job families, the majority of which are individual MOS. This configuration corresponds to the first-tier in Zeidner and colleagues' proposed classification system. The second and third configurations consist of 17 and 9 job families respectively, each family consisting of a group of comparable MOS. These two configurations represent alternative versions of the second-tier of the proposed classification system. As with the composites, Zeidner and colleagues' method is motivated by the proposition that jobs differ in the kinds of cognitive aptitudes and abilities required for successful performance. Theoretically, jobs can then be scaled accordingly. There is both empirical and conceptual support for this proposition in applied psychology, which demonstrates that jobs can be differentiated by cognitive ability, including specific aptitudes (DesMaris & Sackett, 1993; Gottfredson, 1986). Equally as important, there is evidence that differences in job requirements are tied to differences in validity. Specifically, jobs requiring higher levels of an aptitude display higher levels of predictive (or criterion-related) validity for that aptitude (Hunter & Hunter, 1984). Therefore, there is good reason to expect that jobs can be: (a) meaningfully differentiated by aptitude; and (b) that said differences will correspond to differences in predictive validity. Nevertheless, additional research on the proposed job family configurations is needed. There are several reasons for this. The first reason is that clustering MOS into families empirically based on differences in test composites, and their respective weights, potentially capitalizes on error associated with the composites. As described and documented in the preceding section, there is instability in the composites, and their respective weights, particularly at the 150 level. Because of this error, jobs may appear more or less similar than they actually are. Using composites, then, to cluster jobs may lead to misleading recommendations about where to best place MOS within job families, as a means to maximize differential validity and ultimately classification efficiency. A second reason, not unrelated to the first, is that clustering algorithms are prone to capitalize on sample-specific variance (or error). That is, it is not uncommon for job cluster solutions to fail to cross-validate when using a different sample and/or types of job-related data than that from which the original solution was derived (Pearlman, 1980; Sackett, 1988; Statman, Gribben, Harris, & Hoffman, 1994). In the first place, clustering algorithms depend heavily on internal criteria, specifically some mathematical expression of observed differences relative to other differences within the same data. Equally problematic, different algorithms use different criteria. This explains why different clustering algorithms tend to produce widely divergent job structures, even when using the same data (Lightfoot, Diaz, & Vladimirsky, 1997; Statman et al., 1994). Consequently, results can and do vary from sample to sample owing to the idiosyncrasies within a particular sample. In the second place, clustering techniques, such as that applied by Zeidner and colleagues, typically lack formal statistical significance testing frameworks or "rules of thumb" for determining the reliability and practical significance of observed differences (Lightfoot et al., 1997). In other words, the procedures are primarily exploratory. Therefore, unlike other conventional statistical methods (i.e., regression), there are no guides for minimizing Type I or Type II errors as is common in conventional hypothesis testing. In summary, while there is some basis to expect that the proposed job families will be associated with between-family differences in the composites, additional research is needed. Specifically, the current analyses were motivated by: (a) the sampling error present in the composites, and their respective weights; and (b) the potential for empirically-driven clustering techniques to capitalize on this error. As before, the magnitude of these errors, even those that are relatively small, is important. Statistically, error could influence estimates and conclusions regarding the differential validity of the composites. Practically, these conclusions could in turn impact operational decisions about which job family configuration is optimal for classification purposes. Therefore, the effectiveness of Army classification policy is directly tied to the quality of the evidence used to form the conclusions informing these decisions. To address these issues, we conducted a series of exploratory, descriptive analyses aimed at empirically assessing the differential validity of the proposed job families. Results of Exploratory Analyses Assessing the Differential Validity of the Proposed Job Families We conducted two sets of descriptive analyses to assess the degree job families (as currently constructed) could be meaningfully differentiated by the proposed test composites. The first analyses directly targeted between-family differences, controlling for sampling error, in the composites and their respective weights within the 9 and 17 job family configurations. That is, the first set of analyses focused on between-family differences in predictive (or criterion-related) validities. The second set of analyses investigated between-family differences in predicted performance scores based on the test composites for the 9 and 17 job family configurations. That is, the second set of analyses focused on the degree to which test composites were intercorrelated, such that they produced predicted performance scores that were generally equivalent across job families. Differences in Test Composites and their Individual Weights. To directly test differences in the profile of weights making up a composite and different weights individually, we conducted a nested multiple analysis of covariance (MANCOVA) followed-up by individual analyses of covariance (ANCOVAs). For the MANCOVA, job family configuration served as the independent variables and weights for the 7 ASVAB subtests as the dependent variables. 16 To take into account estimation error, we included the square root of observed n (on which estimates were based) as the covariate. To ensure that weights, when aggregated to job familylevel, reflected values observed at that level, estimates were weighted by acquisition ns - the same ns used to aggregate validities to the job family-level when originally deriving weights for the 9 and 17 job family configurations. Overall results for the MANCOVAs were meant to test between-family differences, holding error constant, in the profile of weights (i.e., the full equation) comprising the composite. That is, how much of the variability in a linear profile of the weights can be explained by between-family differences? To test between-family differences in specific weights associated with the different ASVAB subtests, we followed the MANCOVA with individual ANCOVAs based on the same model; except for each ANCOVA there was now only one dependent variable, that being the weights for the applicable ASVAB subtest. This two-stage procedure is consistent with recommendations for conducting multivariate tests of differences in multiple dependent variables (Tabachnick & Fidell, 1996). Results for the omnibus tests in MANCOVA showed that, controlling for sampling error (i.e., \sqrt{n}), there were significant between-family differences in the profiles of the weights across job families for both the 9 (Wilk's $\Lambda_{(56,710.768)}$ = .389, p < .001) and 17 (Wilk's $\Lambda_{(56,710.768)}$ = .101, p < .001) job family configurations. That is, for both the 9 and 17 job family configurations, between-family differences explained a significant amount of the variability in ¹⁵ The model is nested in that the job families comprising the 17 job
family configuration are nested within the 9 family configuration. the profile of the weights, beyond that expected by within-family differences (i.e., random error). At the level of the ASVAB subtests, we observed the following. First, that particular subtests were more strongly associated with between-family differences than others (see Table 4). For example, looking across the two configurations, between-family differences accounted for the greatest variability (see R^2 values) in weights for Auto & Shop Information (AS), Arithmetic Reasoning (AR), and Verbal (VE). Second, the partial effect sizes (R^2 s) for the 17 job family Table 4 Results of Individual ANCOVAs by ASVAB Subtest and Job Family Configuration | | | | J | b Family | Configuration | on | | | |---------|----------------|-------|------|----------|----------------|-------|------|-------| | | | ç |) | | _ | 1 | 7 | | | Subtest | \overline{F} | df | p | R^2 | \overline{F} | df | p | R^2 | | GS | 5.063 | 8,137 | .001 | .228 | .950 | 8,137 | .478 | .053 | | AR | 13.076 | 8,137 | .001 | .433 | 3.224 | 8,137 | .002 | .158 | | AS | 23.875 | 8,137 | .001 | .582 | 4.122 | 8,137 | .001 | .194 | | MK | 7.159 | 8,137 | .001 | .295 | 2.530 | 8,137 | .013 | .129 | | MC | 7.202 | 8,137 | .001 | .296 | 1.763 | 8,137 | .090 | .093 | | EI | 6.191 | 8,137 | .001 | .266 | 2.584 | 8,137 | .012 | .131 | | VE | 9.681 | 8,137 | .001 | .361 | 4.297 | 8,137 | .001 | .201 | Note. R^2 values are partial R^2 s and reflect the *unique* contributions of between-family differences associated with a particular job family configuration to variability in the applicable composite weights. GS = General Science; AR = Arithmetic Reasoning; AS = Auto & Shop Information; MK = Mathematical Knowledge; MC = Mechanical Comprehension; EI = Electronics Information; EI = Verbal. configuration were smaller (roughly 50%+) than the corresponding values for the 9 job family configuration, indicating most of the differentiation between jobs is attributable to the 9 job families. At an aggregate level, this suggests that expanding the 9 job family configuration to 17 families does further differentiate among some jobs, but it is unclear if that added differentiation is practically significant. In summary, controlling for sampling error, there are differences in composite weights, both as a set and individually, across job families in the 9 and 17 job family configurations. There were two additional observations of note. First, consistent with earlier findings regarding composite stability, certain ASVAB subtests were more strongly associated with between-family differences than others [i.e., Auto & Shop Information (AS) versus General Science (GS)]. Second, expanding the 9 job family configuration to 17 appears to further meaningfully differentiate among the families, but the degree to which this is practically significant (i.e., leads to substantial increase in MPP) was unclear from the present findings. Differences in Predicted Performance by Composite. To test between-family differences in predicted performance scores by test composite, we computed distance statistics assessing differences in the predicted performance scores across the range of ability. Mathematically, the "distance" between two composites, indexed by i and j, is represented by the following formula: $$\operatorname{var}(Y_{i} - Y_{j}) = R_{i}^{2} + R_{j}^{2} - 2r_{ij}R_{i}R_{j}.$$ As the left-hand-side of the expression indicates, this involved estimating predicted performances based on the two composites for each recruit, and taking the variance of their difference in the recruit population. This distance statistic is a useful diagnostic tool for assessing differential validity-related properties of the composites. Two composites that are more or less parallel (i.e., no differential validity) would yield an intra-person composite difference that is fairly constant in the population, as would be indicated by a variance that is close to zero. On the other hand, if the composites are close to orthogonal, then the variance of their difference would be large. In our analysis, we would prefer composites that are dissimilar from each in the sense that variances of their pairwise differences are relatively large. The aforementioned ideas also are readily verified using the computational formula on the right-hand-side of the expression above. In the regression context, this expression is proportional to the loss in overall R-square when two separate regression equations from two samples with equal sizes are combined. This interpretation is not appropriate given the unequal job family sample sizes, but will be employed after some modifications in our second distance statistic. For the full set of pairwise distance values for the 9 and 17 job family configurations, see Appendix C. For the 9 job family configuration, on average, the Clerical (CL) (M_D = 4.147) and Mechanical Maintenance (MM) (M_D = 5.738) job families displayed the largest differences with the other families (see Table 5). Similarly, the largest difference between any two families was 12.442 for CL versus MM. A comparable pattern was observed for the 17 job family configuration. The two families exhibiting the largest differences, on average, were Clerical 1 (CL1) (M_D = 6.313) and Mechanical Maintenance 1 (MM1) (M_D = 7.656). The largest difference between any two families was associated with CL1 versus MM1 (20.242). Overall, differences were larger, on average, for the 17 job family configuration than the 9 job family configuration. Table 5 Differences in Predicted Performance Scores by Job Family | | ices in Freu | | | Configurati | | | | |------|--------------|-------|--------|-------------|-------|-------|--------| | | g |) | • | J | | 7 | | | JF . | M_D | Min | Max | JF | M_D | Min | Max | | CL | 4.147 | 1.168 | 12.442 | CL:1 | 6.313 | 1.420 | 20.242 | | CO | 2.410 | .264 | 6.423 | CL2 | 2.392 | .529 | 11.222 | | EL | 1.346 | .332 | 3.912 | CO1 | 4.046 | .848 | 9.740 | | FA | 1.630 | .264 | 5.676 | CO2 | 1.629 | .194 | 6.237 | | GM | 1.827 | .325 | 5.003 | EL1 | 1.652 | .204 | 6.669 | | MM | 5.738 | 1.946 | 12.442 | EL2 | 1.508 | .242 | 5.387 | | OF | 1.453 | .325 | 4.010 | EL3 | 2.225 | .218 | 9.674 | | SC | 1.592 | .267 | 6.256 | FA | 1.906 | .195 | 7.178 | | ST | 1.789 | .267 | 6.510 | GM1 | 3.267 | .629 | 9.673 | | - | | | | GM2 | 2.095 | .194 | 8.132 | | | | | | MM1 | 7.656 | 2.751 | 20.242 | | | | | | MM2 | 2.212 | .492 | 7.222 | | | | | | OF | 1.746 | .204 | 7.231 | | | | | | SC | 1.638 | .339 | 8.023 | | | | | | ST1 | 1.876 | .195 | 8.148 | | | | | | ST2 | 3.103 | .218 | 12.012 | | | | | | ST3 | 1.765 | .284 | 7.220 | *Note*. Distance values reflect variance of differences between pairs of predicted performance scores multiplied by 100. Table 6 (below) provides a summary comparison of differences in predicted performance scores across the 9 and 17 job family configurations. This table highlights potential increments (or decrements) in differential validity by shredding-out some of the 9 job families into 17 families. When assessing the gains in differential validity by moving from the 9 to a 17 job family configuration and/or to identify possible alternative job family configurations, we focused on two criteria. The first criterion of interest was whether the between-family differences for the same family at the 17 job family level were consistently larger than the corresponding between-family differences at the 9 job family level. As evident from the table, only General Maintenance (GM), Electronics (EL), and Skilled Technical (ST) appeared to show consistent gains (on average) in differential validity from shredding out their respective families at the 9 family configuration into 2-3 smaller families for the 17 configuration. Results for the other families were mixed. For example, splitting the Clerical (CL) job family into CL1 and CL2 produced a sizeable increment (on average) in differential validity for CL1 (from $M_D = 4.147$ to 6.313), but a relatively considerable drop for CL2 (from $M_D = 4.147$ to 2.392). A similar pattern is evident with the Combat (CO) job family. Table 6 Comparison of Distance Statistics Across 9 and 17 Job Family Configurations | Comparison of Distance Statistics Across 9 and 17 Job Family Configurations | | | | | | | | | | |---|-------|--------|---------------------------|-------|--------|--|--|--|--| | JF | M_D | % +/- | JF | M_D | % +/- | | | | | | Clerical | | | Electronics | | | | | | | | 1. CL (9) | 4.147 | | 1. EL (9) | 1.346 | | | | | | | 2. CL1 vs. CL2 (17) | 1.736 | -58.14 | 2. EL1 vs. EL2 (17) | .242 | -82.02 | | | | | | 3. CL1 vs. Other JFs (17) | 6.618 | +59.59 | 3. EL1 vs. EL3 (17) | 1.459 | + 8.40 | | | | | | 4. CL2 vs. Other JFs (17) | 2.436 | -41.26 | 4. EL2 vs. EL3 (17) | 1.097 | -18.50 | | | | | | Combat | | | 5. EL1 vs. Other JFs (17) | 1.767 | +31.28 | | | | | | 1. CO (9) | 2.410 | | 6. EL2 vs. Other JFs (17) | 1.627 | +20.88 | | | | | | 2. CO1 vs. CO2 (17) | 1.543 | -35.98 | 7. EL3 vs. Other JFs (17) | 2.360 | +75.33 | | | | | | 3. CO1 vs. Other JFs (17) | 4.213 | +74.81 | Skilled Technical | | | | | | | | 4. CO2 vs. Other JFs (17) | 1.635 | -32.16 | 1. ST (9) | 1.789 | | | | | | | General Maintenance | | | 2. ST1 vs. ST2 (17) | 2.137 | +19.45 | | | | | | 1. GM (9) | 1.827 | | 3. ST1 vs. ST3 (17) | 1.189 | -33.54 | | | | | | 2. GM1 vs. GM2 (17) | 2.086 | +14.18 | 4. ST2 vs. ST3 (17) | .685 | -61.71 | | | | | | 3. GM1 vs. Other JFs (17) | 3.345 | +83.09 | 5. ST1 vs. Other JFs (17) | 1.906 | + 6.54 | | | | | | 4. GM2 vs. Other JFs (17) | 2.096 | +14.72 | 6. ST2 vs. Other JFs (17) | 3.345 | +86.98 | | | | | | Mechanical Maintenance | | | 7. ST3 vs. Other JFs (17) | 1.884 | + 5.31 | | | | | | 1. MM (9) | 5.738 | | | | | | | | | | 2. MM1 vs. MM2 (17) | 3.599 | -37.28 | | | | | | | | | 3. MM1 vs.
Other JFs (17) | 7.926 | +38.13 | | | | | | | | | 4. MM2 vs. Other JFs (17) | 2.119 | -63.07 | | | | | | | | Note. As in Table 5, distance values reflect variance of differences between pairs of predicted performance scores multiplied by 100. For each comparison, the applicable job family configuration is in parentheses. % +/- reflects the percentage change (increase or decrease) in distance values going from applicable family in 9 job family configuration to corresponding values representing 17 family configuration. Comparisons involving one job family versus "other JFs", excludes related job families (i.e., CL1 vs. Other JFs, excludes CL2). The second criterion of interest was whether at the 17 job family level within-family differences were comparable to corresponding between-family differences. That is, all other things being equal, it would be preferable that differences between families, on average, were substantially larger than differences within related families. This was not consistently the case based on the current analyses. For example, differences between ST1, ST2, and ST3 were not consistently larger than average between-family differences involving one of these three families versus the other families (in the 17 job family configuration). MM1 and MM2 displayed a comparable trend. Conversely, EL1, EL2, and EL3 did exhibit average between-family differences consistently larger than corresponding within-family differences. Overall, of the original 9 job families, only EL and GM satisfied both criteria and represented good candidates for shredding. As a follow-up analysis to assess the practical importance of these differences, we computed the reduction of "total R-squared" from combining pairs of job families from the 17 job family configuration. By "total R-squared," we are referring to the overall R-squared (or total squared composite validity) in the regression problem represented by the combination of 17 separate LSE problems corresponding to the 17 job family composites. This reduction was computed using the following formula: $$\Delta R_{ij}^2 = \left(R_i^2 + R_j^2 - 2r_{ij}R_iR_j\right)\left(\frac{n_in_j}{n_i + n_j}\right)\left(\frac{1}{n}\right)$$ We employed acquisition rather than observed sample sizes for the weights n_i and n_j as the former more appropriately reflect the relative size of the job family in the Army; n is the total acquisition size across 17 job families. Note that the expression inside the first parentheses is just the constant distance statistic formula. The entire expression above is a function of job family size such that a large reduction in R^2 would be expected from combining close to orthogonal composites (as in the constant difference distance statistic) that are associated with large job families. Results are reported in Appendix C (see Table 3). Overall, the pattern was consistent with those from the analyses above of the variance of differences in predicted performance scores. That is, comparisons previously associated with larger variance of differences in predicted performance scores were associated with bigger drops in \mathbb{R}^2 even after taking into account job family sizes. Likewise, those families (i.e., CL1, MM1) that tended to show consistently larger variance in performance score differences displayed bigger decrements in \mathbb{R}^2 when combined with one of the other families. For example, as with the previous analysis, the biggest reduction in \mathbb{R}^2 across all possible combinations was associated with CL1 and MM1 (.005819). More importantly, the loss in \mathbb{R}^2 from combining families that represented shred-outs of families from the 9 job family configuration tended to be small to moderate, ranging from .000043 (EL1 and EL2) to .000928 (CO1 and CO2). The average loss in \mathbb{R}^2 corresponding to these shred-outs came to .0003639, which loosely corresponds to a .0191 drop in composite validity (\mathbb{R}), suggesting that the average loss in total \mathbb{R}^2 was not substantially different than that expected by error. In summary, the distance analysis indicates varying differences in predicted performance scores between families at both the 9 and 17 job family configurations. Only a few families within each configuration consistently exhibited relatively sizeable differences in predicted performance with the other families. Comparing differences between the 9 and 17 job family configurations suggested mixed results. Shredding families from the 9 into 2 - 3 smaller families for the 17 job family configuration produced both increments and decrements in (average) differential validity across families. Results observed when investigating the expected reduction in composite validity (ΔR^2) from combining families indicate that these composite differences relatively are not sizeable, as the average drop in composite validity (R) was practically small when taking into account error. As a whole, these findings are consistent with previous research showing that test composites, and corresponding predicted performance scores, tend to be highly correlated (Greenston et al., 2001). While the present findings could be used to identify possible alternative configurations other than the proposed 9 and 17 configurations, they suggest that the observed differences are not likely to produce practical differences in aggregate Soldier performance (MPP). The final joint analysis, summarized next, provided a more comprehensive answer to that question. Evaluating the Practical Effects of Composite Stability and Job Family Structure on Classification Efficiency: An Integrated Analysis The foregoing analyses demonstrated that: (a) test composites are reasonably stable, except for the 150 job configuration; and (b) there is evidence of differential validity in the test composites, even when controlling for sampling error. Although they suggest implications for classification efficiency, these analyses did not *directly* measure the practical effects of these issues on classification efficiency. To assess the practical effects of these issues, we conducted a comprehensive set of analyses that modeled random variation in test composites induced by empirically estimating the weights. Doing this enabled us to examine its impact on both overall MPP and differences in MPP across and within job families. This section is organized as follows. First, we discuss the motivations for conducting this analysis. Specifically, we review Zeidner and colleagues' method for estimating MPP and its implications for operational decisions regarding the proposed composites and job families. Second, we briefly describe the method used in the current analysis and its advantages. Third, we summarize our findings from the analysis. Estimating MPP: Implications for Operational Decisions Involving the Proposed Composites and Job Families When evaluating which features of a classification system are optimal, it is strongly recommended (see Pearlman, 1980; Sackett, 1988) that special emphasis be placed on external criteria, such as indices of classification efficiency. Consistent with these recommendations, indices, specifically MPP, have been used to inform operational decisions for structuring Army classification systems, such as which job family configuration to adopt to maximize MPP (i.e., Zeidner et al., 2000, 2001, 2003b). However, as with any statistical estimate, the quality of MPP estimates could vary considerably depending on the estimation procedure. Therefore, the quality of these estimates is important, as their impact on the effectiveness of these operational decisions could be substantial. As described earlier, Zeidner and colleagues' have traditionally employed a double crossvalidation design for estimating MPP.¹⁷ In brief, this design involves deriving the two sets of weights (evaluation and assignment) separately using different samples of recruits (generically referred to as Samples A and B, respectively), then applying both sets to a third series of cross- or holdout samples (Sample C). Whereas, assignment weights are used to classify the recruits, the evaluation weights are used to compute predicted performance scores. The predicted performance scores are then averaged across recruits within each cross-sample, and then across all crosssamples (usually 20), to obtain an estimate of overall MPP. This overall estimate of MPP has then been used to evaluate features of Zeidner and colleagues' proposed classification system or possible alternatives, such as the optimal job family configuration (see Greenston et al., 2001; Zeidner et al., 2000, 2003b). The purpose of the double-cross validation design is to model sample-to-sample variability (i.e., sampling error) in MPP, which when averaged across the multiple cross-samples is expected to produce an unbiased estimate of overall MPP. While past research has been instructive, there were aspects that could be constructively extended to more definitively evaluate the classification potential of the proposed test composites and job family configurations. First, as traditionally applied, the double cross-validation design does not directly model error attributable to the test composites, and their respective weights. Under the double cross-validation design, the test composites are essentially treated as fixed. That is, the composite weights are treated as the unknown ("true") population values, which by definition are free of error. In regression terminology, the double cross-validation design models the *standard error* of predicted performance, but not the standard error of the composites (and their respective weights). While the two are related, they technically are not the same. That is, while standard errors in predicted performance are partly a function of errors in the test composites, they are also a function of other random sources of sample-specific variance. Therefore, by
excluding error associated with the test composites, the current design likely underestimates the level of error associated with MPP. More recent research by Zeidner and colleagues (Zeidner et al., 2003a) confirms this by documenting that there is variability in predictive validities, and indirectly the composite weights, when based on the evaluation and assignment samples. A second way in which past research could be extended is that previous studies have tended to focus on overall MPP, arguably at the expense of MPP at the job family- or MOS-level. While overall MPP is informative, practically the MPP of the individual job families (or MOS) is expected to be of equal, if not potentially greater, interest to Army personnel decision-makers for the following reasons. First, some job families may be more central to the Army's mission than others, thus decision-makers are likely to be interested in MPP estimates for specific job families. Second, when evaluating the proposed composites and job families, decision-makers will likewise be interested in how MPP is distributed across the different families, such that the high-performing recruits are not being disproportionately allocated to certain families over others. Reports of MPP at the job family- or MOS-level indicate that there $^{^{16}}$ Zeidner and colleagues more recently introduced a triple cross-validation design for estimating MPP (see Zeidner et al., 2003b). Essentially, it is the same design as described previously, except that participants comprising the evaluation (Sample A) and assignment samples (Sample B) are at one point switched, so as to produce a back- and cross-sample set of MPP estimates. The two sets are then averaged to obtain the final estimate of MPP. This design is comparable, but not equivalent, to the k-fold cross-validation design proposed here, where k=2. is variability in MPP across jobs, such that some jobs are associated with negative MPP values, whereas others with positive MPP values (Zeidner et al., 2000, 2003b). Third, external criteria, such as MPP, can be instructive when assessing job similarity for purposes of determining differential validity. That is, if two job families are comparable in their composites, differences in MPP can be informative for externally validating the practical significance of these differences. Because some job family-level MPPs will be based on smaller sample sizes (n), even when aggregated across multiple cross-samples, the standard error of MPP for these families will be higher than that for all families (as a whole). Therefore, this error could substantially impact conclusions about between-family differences in MPP. In summary, while previous research has its strengths and has been informative, there are limitations that could impact operational decisions based on these estimates. Specifically, these limitations are: (a) the double cross-validation design typically employed in past studies does not model error in the test composites, and their respective weights, thereby likely underestimating error in MPP; and (b) past research tends to focus on overall MPP with less attention to MPP at the job family- or MOS-level. To address these issues, we conducted a constructive simulation to model the practical effects of estimation error in the composites on MPP and its implications for optimizing classification using the proposed job families. #### Method For the current analyses, we conducted a constructive simulation with multiple replications using actual ASVAB and performance data from the large-scale SQT database from which the proposed composites and job family configurations were derived. The design of the simulation closely represents an extension of Zeidner and colleagues' double-cross validation design, and involved the following steps. First, similar to Zeidner and colleagues' design, we randomly assigned individual recruits to one of three types of samples. Specifically, we assigned a subset of the total sample (n = 5,000) to one of 5 cross-samples of 1,000 each (Sample C), then equally partitioned the remaining recruits $(n \sim 250,000)$ into an assignment (Sample A) and an evaluation sample (Sample B). For the second step, we estimated the applicable AA and PP composites using the assignment and evaluation samples. Third, we optimized the classification of recruits in each of the cross-samples based on scores computed using the previously derived AA composites and the same allocation percentages reported in Zeidner and colleagues' previous work (see Zeidner et al., 2001). Fourth, after assignment, we computed predicted performance scores for each participant in the cross-samples using the PP composites, likewise previously derived. As with Zeidner and colleagues, to obtain mean predicted performance (MPP) we averaged PP scores across participants within each cross-sample. Fifth, and finally, we repeated the first four steps 49 times to obtain data for 49 replications (k = 49). To ensure that the majority of the participants in the total sample contributed data to the cross-samples (Sample C), we initially ¹⁷ Consistent with Zeidner and colleagues, AA and PP composite weights were based on ASVAB-SQT validities corrected for criterion unreliability and range restriction. As we were interested in the contributions of classification (and not selection) to MPP, validities were corrected to the Army Input population, which represents all recruits qualified to serve in the Army and eligible for assignment to entry-level MOS. partitioned the entire data into 49 subsamples of 5,000 each. ¹⁹ For each of the 49 replications, one of the 49 subsamples served as Sample C. The first four steps are consistent with Zeidner and colleagues' double cross-validation design. The fifth step, replicating the double crossvalidation design k times, extends Zeidner and colleagues' design, enabling us to: (a) directly model random variation (error) in estimating the AA and PP composite weights; and (b) evaluate the practical effects of this variation when making comparisons involving MPP.²⁰ To assess differences by job family configuration and composite weight derivation, we employed a 3 x 2 x 2 design. That is, we repeated the above design 10 times to obtain MPP estimates to evaluate the comparisons of interests. There was one factor reflecting job family configuration and two factors reflecting differences in how the assignment composite weights were estimated. The job family configuration factor had three levels (9, 17, and 150) reflecting the alternative job family configurations for the "operational" two-tiered classification system. As for the two composite estimation factors, one focused on the type of constraint placed when estimating the weights and consisted of two levels: no constraint (i.e., observed OLS weights) versus positive constraint (i.e., weights are constrained to be positive). The second estimation factor dealt with the impact of standardizing the weights to produce scores with equal mean and variance, and was comprised of two levels: unstandardized versus standardized. Consistent with its "operational" implementation, the evaluation weights used in computing individual predicted performance scores were always derived using the 150 job family configuration and unconstrained, OLS-regression weights. Since composite weights for the 150 job family configuration are not constrained to be positive, only the no constraint condition was relevant when estimating MPP for the 150 configuration. The conditions comprising the design are summarized in Table 7 below. The SAS programs for replicating the design, with accompanying documentation, are found in Appendix D. Table 7 Summary of Conditions in 3 x 2 x 2 Design | | Constraint | | | | | | |-----------------|--|--|--|--|--|--| | Standardization | No Constraint | Positive Constraint | | | | | | Unstandardized | 9, 17, and 150 JF
Configurations | 9 and 17 JF
Configurations | | | | | | Standardized | 9, 17, and 150 JF
Configurations | 9 and 17 JF
Configurations | | | | | This design offers several advantages. First, as with Zeidner and colleagues, it places emphasis on the practical effects of composite stability and job family configuration, specifically classification efficiency (i.e., MPP), and not strictly internal or statistical criteria. Second, the current design extends Zeidner and colleagues' work by directly modeling error in the composites, and their respective weights; this error is expected to influence estimates of MPP. By taking into account error in the composites, we can more accurately evaluate differences in MPP owing to ¹⁸ A 50th subsample with n less than 5,000 was also derived, which consisted of the n recruits remaining after partitioning data into the first 49 subsamples. This 50^{th} subsample was not used in our design. ¹⁹ This method is also known as k-fold (double) cross-validation. different job family configurations and other proposed features of a classification system, so as to more confidently inform operational choices about Army classification policy. Third, the design extends Zeidner and colleagues' research by considering MPP estimates at the job family-level. # Summary of Results As discussed earlier, the current analyses were meant to assess the impact of job family configuration and composite estimation factors on estimates of overall MPP and differences in MPP both across and within job families, taking into account composite stability. We turn to a summary of the major findings for each in turn. Overall MPP. To evaluate the effects of job family configuration and composite estimation factors on overall MPP, we obtained estimates of overall MPP using the aforementioned procedure. These estimates were then analyzed using a
standard analysis of variance (ANOVA) with MPP as the dependent variable, and the independent variables being the three factors comprising our design (with abbreviations in parentheses): (a) job family configuration (JFCONFIG); (b) no constraint vs. positive constraint (CONSTRAINT); and (c) unstandardized vs. standardized weights (STAND). Results from this ANOVA are summarized in Table 8. From the results, we observed the following. First, neither the main effect nor interactions involving CONSTRAINT were statistically significant (p > .05). Similarly, associated effect sizes (R^2) were zero. Therefore, even without taking into account estimation error, constraining weights to be positive did not materially affect MPP. Second, the main effects involving STAND $(F_{(1,2450)} = 7459.934, p < .0005)$ and job configuration $(F_{(2,2450)} = 1867.287, p < .0005)$ were statistically significant. Because of the large sample size (N), we also computed effect size estimates. Both exhibited generally large effect sizes, with STAND (partial $R^2 = .754, R^2 = .517$) explaining more of the variability in MPP than JFCONFIG (partial $R^2 = .605, R^2 = .259$). Therefore, both standardization of weights and job configuration significantly contributed to differences in MPP. Third, and finally, there was a significant interaction between STAND and JFCONFIG $(F_{(2,2450)} = 212.346, p < .0005)$, although the magnitude of this effect was noticeably smaller relative to its component main effects (partial $R^2 = .148, R^2 = .030$). Therefore, differences in MPP by job configuration were dependent on whether the weights were standardized or not. We investigated the nature of this effect and the above main effects more fully, including the implications of estimation error, in a series of follow-up analyses. We followed-up the omnibus ANOVA with individual ANOVAs designed to test for simple effects, with an emphasis on job family configuration. These ANOVAs followed the omnibus model described previously, except there was a single independent variable (job family configuration) and each focused on MPP estimates obtained for a specific condition. As there were 4 conditions total (excluding job configuration), we conducted 4 ANOVAs. Results from these analyses, including estimates of standard error of MPP, are summarized in Table 9. Consistent with the significant main effect observed previously for standardization of the weights, MPP estimates tended to be systematically lower when weights were standardized. Evidence for the significant interaction between standardization and job configuration can be Table 8 Results of Analysis of Variance (ANOVA) of Overall MPP | Factor | F | df | Partial R ² | R^2 | |------------------------------|-----------|--------|------------------------|-------| | JF Configuration (JF CONFIG) | 1867.287* | 2,2450 | .605 | .259 | | Constraint (CONT) | .084 | 1,2450 | .000 | .000 | | Standardization (STAND) | 7459.934* | 1,2450 | .754 | .517 | | JF CONFIG x CONT | .000 | 1,2450 | .000 | .000 | | JF CONFIG x STAND | 212.346* | 2,2450 | .148 | .030 | | JF CONFIG x CONT x STAND | .004 | 2,2450 | .000 | .000 | | Overall R^2 | .831 | • | | | Note. * p < .0005. Partial R^2 represents percentage of variance in weights explained by factor, having partialed out variance attributable to the other factors. R^2 represents percentage of total variance in weights explained by factor. seen in that the differences in MPP by standardization increased as the number of jobs increased. For example, looking at the 9 job family configuration, standardizing the weights produced MPP values of roughly .08 versus .12 when weights were unstandardized. When moving to the 17 job family configuration, the difference widened, as standardizing the weights produced MPP values of .09, whereas unstandardized weights resulted in MPP values around .14, roughly a 25% increase in the difference. Increasing the number of jobs almost ten-fold to 150 increased the difference, with standardized weights producing an MPP of .12 versus .19 for unstandardized weights – a 40% increase in the difference over the 17. In sum, the magnitude of the difference in overall MPP between standardized and unstandardized weights varied partly as a function of job configuration. A possible explanation, with implications for what this means operationally, are discussed shortly. As for job family configuration, MPP significantly differed by configuration across all conditions. As evident from Table 10, differences in MPP among the three job configurations were statistically significant (p < .0005). The magnitude of the corresponding effect sizes (R^2) varied, ranging from low (.040) to high (.801). A closer inspection of the differences showed that overall MPP generally increased as the number of job families increased, although the rate at which MPP improved markedly declined with the added number of job families. For example, when looking at the no constraint - standardized condition, MPP goes from .083875 to .089514 (a 6.72% increase) when the number of jobs are doubled (from 9 to 17), and to .119391 (a 33.4% increase) when the number of jobs increases almost ten-fold from 17 to 150. Consistent with the significant interaction between job configuration and standardization, these differences varied by whether the weights were standardized or not. In contrast to the preceding example, for the no constraint - unstandardized condition, MPP increased from .119569 to .140396 (a 17.4% increase) when the number of jobs doubled (from 9 to 17), and to .186598 (a 32.9% increase) when increasing the number of jobs from 17 to 150. In sum, while overall MPP differed by job family configuration, such that MPP generally increased as the number of jobs increased, the rate at which MPP improved steadily declined with the added number of jobs. In addition, the magnitude of these differences and rate of improvement in MPP depended on whether weights were standardized or not. Several important observations are of note. First, the magnitude of the standard errors of MPP observed using the current design tended to be larger than those previously reported by Zeidner and colleagues (Zeidner et al., 2000, 2003b). Although comparison values were not readily available for all conditions, the estimates produced here were generally 25% larger than those previously reported. These data suggest that test composite stability could meaningfully influence operational decisions, based on MPP, given the relatively small differences in MPP observed between many of the job family configurations and across conditions. Second, and related to the first point, taking into account the standard error of MPP, there was sizeable overlap in MPP across the job family configurations (see Table 10). In particular, there was considerable overlap in overall MPP when weights were standardized and when comparing the 9 to the 17 job family configurations. For example, looking at the no constraint - standardized condition, there was substantial overlap in the confidence intervals for MPP for the 9, 17, and, to a lesser extent, 150 job family configurations. Practically, this confirmed that statistically significant omnibus differences in MPP by job family configuration reported previously were mainly due to differences between the 9 and 150 job families. A third and final observation pertains to the finding that while overall MPP improved as the number of jobs increased, the magnitude of these increases diminished in relation to the number of jobs. For example, as reported above, doubling the number of jobs from 9 to 17 tended to produce a jump in overall MPP of 7% to 17%. By comparison, increasing the number of jobs ten-fold at best increased MPP by one-third (33% total). This suggests that most of the differentiation among jobs, given the population of Army jobs from which the composites and job families were constructed, is attributable to the 9 and/or 17 job family configurations. These results support earlier analyses showing greater *between*-job than *within*-job differences for the 9 and 17 job families. In summary, when taking into account estimation error in test composites and their respective weights, there appears to be no practical difference in overall MPP between the 9 and 17 job family configurations, and to a lesser extent, the 17 and 150 configurations. This is particularly the case when test composites are based on standardized weights. Specifically, when weights are standardized to produce predicted assignment (AA) scores with equal means and variances, observed differences in MPP were generally small and within the standard error of MPP, especially when comparing the 9 to the 17 job family configurations (.083988 versus .089706). This finding is significant for two reasons. First, from a practical perspective, MPP estimates based on standardized weights more closely satisfy existing operational constraints, as they produce a more equitable distribution of recruit quality across job families. Thus, these weights mimic statistically the distributional requirements current Army classification policy considers when classifying recruits to entry-level MOS. A second reason for the significance of this finding is that it suggests that specific abilities and aptitudes contribute less to classification efficiency relative to general mental ability (GMA), given the current population of jobs. We are able to infer this because standardizing the weights essentially equates the composites in terms of GMA, such that what remains after standardization reflects the *unique* contributions of specific abilities and aptitudes to classification independent of GMA. According to DAT, increasing the number of jobs should maximize differences among jobs in their performance requirements, thereby increasing the classification efficiency of a multidimensional test battery and corresponding composites based on
specific aptitudes. As reported previously, larger MPP values were observed when weights were unstandardized, and the increases in MPP as the number of jobs increased (from 9 to 17 to 150) were greater than with standardized weights. These increases in MPP are generally attributable to higher predictive (or criterion-related) validities, which are largely a function of GMA (Hunter, 1983; Ree & Earles, 1991; Ree, Earles, & Teachout, 1994). When these validities were effectively equated by standardizing the weights, both the magnitude of MPP and increases in MPP from moving to 9 to 17 to 150 jobs declined appreciably. Therefore, the decline in MPP improvement as the number of jobs increases, particularly when the number of jobs is increased ten-fold, indicates that a substantial portion of the pre-standardization differentiation (i.e., differential validity) among jobs is attributable to GMA, not specific abilities and aptitudes. MPP by Job. To evaluate the effects of job family configuration and estimation method on MPP at the job-level, we computed estimates of MPP for each job using the recorded joblevel assignments and predicted performance scores from the preceding simulation. As there was no evidence from the above analyses that constraining weights to be positive materially affected MPP estimates, this factor was dropped from the design. We used the 150 MOS comprising the 150 job family configuration to define the job-levels. This enabled us to investigate how the proposed test composites would function operationally, as this is the level at which actual classification decisions are made in the field, and not at an aggregate level, such as the 9 or 17 job families. Therefore, we obtained estimates of MPP for 150 jobs using the AA assignment composites based on the 9, 17, and 150 job family configurations. To assess differences in composite estimation method, one set of MPP estimates was based on unstandardized AA weights and the second set on standardized AA weights. To facilitate their interpretation and the identification of major trends, results are represented visually in Figures 1 to 6 (Appendix E).²¹ Tables containing MPPs and standard errors by job family configuration and standardization can be found in Appendix F. From these figures and tables, we identified several major trends. First, as to be expected, and consistent with previous results (Zeidner et al., 2000, 2003b), the level of MPP differed by job. However, the magnitude and pattern of these differences noticeably varied, depending on whether weights were standardized or not. Specifically, there tended to be greater between-job differences in MPP when weights were unstandardized than standardized, such that some jobs were associated with low, and in some cases, negative MPP ²⁰ Each box-and-whisker plot in these figures represents the distribution of MPP for a specific job over 245 cross-samples, given a particular job family configuration (9, 17, or 150). The dot inside the box represents the median of the distribution. The width of the box represents the inter-quartile range (IQR) or middle 50% of the distribution. The whiskers extend to 1.5 IQR from the median or to the most extreme MPP in the distribution, whichever is most applicable. Summary of Simple Effects of Job Family Configuration on Overall MPP by Condition Table 9 | | | ſ | ob Family C | Configuration | - | | | | |---------------------------------------|---------|---------|-------------|---------------|---------|---------|-----------|-------| | | 6 | _ | - | 7 | 15 | 0. | | | | Condition | MPP | SE | MPP | SE | MPP | SE | F | R^2 | | 1. No Constraint-Unstandardized | .119569 | .014048 | .140396 | .014049 | .186598 | .013936 | 1468.763* | .801 | | 2. No Constraint-Standardized | .083875 | .013690 | .089514 | .014327 | .119391 | .014397 | 446.305* | .549 | | 3. Positive Constraint-Unstandardized | .119840 | .013932 | .140553 | .014150 | ŀ | ; | 266.594* | .353 | | 4. Positive Constraint-Standardized | .083988 | .013592 | 902680. | .014347 | 1 | 1 | 20.510* | .040 | Note. * p < .0005. 95% Confidence Intervals Around Estimated Overall MPP by Job Family Configuration and Condition | | | | Job Family C | Family Configuration | | | |---------------------------------------|---------|---------|--------------|----------------------|---------|---------| | | 0, | • | | 7 | 11 | 150 | | Condition | Lower | Upper | Lower | Upper | Lower | Upper | | 1. No Constraint-Unstandardized | .092035 | .147103 | .112860 | .167932 | .159283 | .213913 | | 2. No Constraint-Standardized | .057043 | .110707 | .061433 | .117595 | .091173 | .147609 | | 3. Positive Constraint-Unstandardized | .092533 | .147147 | .112819 | .168287 | | | | 4. Positive Constraint-Standardized | .057348 | .110628 | .061586 | .117826 | | | Note. Confidence intervals computed using conventional formula: MPP +/- (1.96*SD). Table 10 values, whereas others produced strongly positive MPP values. For example, looking at Figure 1, under the 9 job family configuration, CO jobs were consistently associated with negative MPP values, whereas EL jobs were associated with positive MPP values. Moving to the 17 job family configuration, one observes a comparable pattern, as CO2 jobs tended to produce MPP values close to or slightly greater than zero, whereas CO1 jobs continued to attract low performers, resulting in negative MPP values. At the 150 job family configuration, while there was less consistency in MPP for families as a whole (as the families have been shredded into their constituent jobs), there was even greater between-job variability in MPP, with particular jobs (i.e., 71D) clearly benefiting over others (i.e., 11B). These findings are consistent with research by Zeidner and colleagues at the job family-level (Zeidner et al., 2000, 2003b). In contrast, when looking at MPP based on standardized weights, there was substantially less variability in MPP across jobs. That is, unlike unstandardized weights, we did not observe jobs with relatively large positive MPP achieved at the expense of other jobs, as indicated by comparatively lower and/or negative MPPs. For example, as evident from Figure 4, MPP values for CO and EL jobs were generally comparable. Of particular interest given its centrality to the Army's mission, MPP for CO jobs was higher, on average, than MPP produced when using unstandardized weights. As with the unstandardized weights, while differences in MPP across jobs increased as the number of job families increased, from the 9 to the 17 to the 150 job family configurations, the magnitude of these differences were smaller relative to the same differences observed using the unstandardized weights. Second, comparable to results for overall MPP, differences in job-level MPP by job family configuration tended to be small when taking into account standard error. Therefore, it was difficult to conclude that one configuration produced a substantially higher level of MPP than an alternative configuration, particularly when comparing the 9 and 17 configurations. While at the aggregate level, the magnitude of the standard error for the same job across the 9, 17, and 150 job configurations tended to be equivalent, there were sizeable overlaps in job-level MPP by configuration. For example, Combat (CO) jobs, such as 11B, 11C, and 11H, displayed relatively small standard errors (on average). However, when comparing MPP for these jobs across the three job family configurations (9, 17, 150), the observed differences in MPP by configuration were practically small, when factoring in the applicable standard errors. Similarly, where there were sizeable differences in MPP, they were primarily between the 9 and 150 configurations and not the 9 and 17 job family configurations. In summary, results at the job-level were generally consistent with those observed for overall MPP. Both the magnitude of MPP and between-job differences in MPP were, on average, contingent on job configuration and standardization of the weights. Specifically, job-level MPP tended to be higher when weights were unstandardized than standardized. In addition, between-job differences in MPP were greater between the 9 and 150 job family configurations than between the 9 and 17 configurations, particularly when taking into account the standard error of MPP. As before, these findings suggest that standardized weights are preferable to unstandardized weights for drawing research-based conclusions about the efficacy of proposed classification system features and when making operational classification decisions. For one, standardized weights produce less variability in MPP across jobs, ensuring a more equitable distribution of recruit quality while at the same time yielding overall Army classification benefits. Results based on standardized weights indicate that classification benefits could be achieved in a manner that is consistent with Army distributional requirements. A second advantage of standardized weights is that they produce significantly fewer jobs exhibiting negative MPP values; that is, fewer jobs where average aggregate performance is expected to be negative. In particular, for certain jobs that are especially critical to the Army's mission (i.e., CO), using standardized weights for classification resulted in higher MPP compared to the MPP obtained using unstandardized weights. Taken together, these findings confirm that standardized weights are more likely to maximize aggregate performance, while ensuring an equitable distribution of recruit quality across jobs. By approximating Army distributional requirements, assignments based on standardized weights should theoretically require fewer ad-hoc adjustments by Army personnel managers. This is beneficial because such adjustments, which will likely be unsystematic, would otherwise negate the classification efficiency of the proposed regression-weighted test composites. #### Discussion As noted by Pearlman (1980),
job classification research involves both a process and a product. The purpose of the current report was to evaluate the process and product of the proposed AA test composites and their efficacy in Army classification. In this case, *process* refers to how the AA composites were derived, whereas *product* references the stability and classification potential of the composites. This section is organized as follows. First, we summarize the major findings from our evaluation of the test composites and we review outstanding implementation issues. Second, we make recommendations regarding the adoption of the proposed AA composites. Third, and finally, we offer several suggestions for future research to further improve Army classification and selection. ## Summary of Major Findings Our evaluation focused on investigating the stability and differential validity associated with the proposed regression-weighted AA composites, and their practical effects on classification efficiency (as measured by MPP). In particular, we focus on differences between the 9 AA composites and an alternative set of 17 composites, which represent different versions of the assignment tier in the "operational" version of Zeidner and colleagues' proposed two-tiered classification system. Overall, we found the following: First, regression-weighted test composites for the 9 and 17 job family configurations demonstrated the greatest stability. Both the composites as a whole, and their respective weights, displayed smaller standard errors and fewer problems (i.e., collinearity, "weak" data) than those for the 150 job family configuration. Based on our findings, the stability of the test composites comprising the 150 job family for use in assigning recruits to entry-level MOS configuration is questionable. This is because the lower n, on average, on which estimates are based, is associated with higher standard errors and greater susceptibility to inflation due to multicollinearity present among the ASVAB subtests. There is no compelling evidence that the 9 are necessarily more stable than the 17, as both are based on families of relatively large n and the effects of multicollinearity and "weak" data are comparable across the two sets of composites. Second, as currently constructed, the 9 and 17 AA composites demonstrated between-family differences in validities, even when taking into account sampling error. Specifically, both the 9 and 17 AA composites displayed systematic between-family differences in: (a) composite validities (Rs), operationalized as differences in their respective weights, both individually and as a full set; and (b) predicted performance scores (r). However, these differences varied by job family, such that some families (i.e., Clerical and Mechanical Maintenance) within each set of composites were more consistently and strongly differentiated from the other jobs than others. Equally as important, shredding-out families and composites at the 9 job family configuration to produce the 17 configuration resulted in mixed findings. Whereas some jobs displayed greater differentiation in validities and predicted performance scores, other jobs did not. Therefore, the gains in differential validity were not uniform. Equally as important, they were partially offset by losses in differentiation for other jobs. Overall, moving to the 17 AA composites does not appear to produce greater levels of differential validity than that observed with the 9 AA composites. Third, and most importantly, differences in mean predicted performance (MPP) among the 9, 17, and 150 AA test composites were not practically significant, especially after taking into account estimation error in MPP. That is, both overall MPP and job-level MPP did not substantially differ across job family configuration, particularly between the 9 and 17 AA composites, after considering variability in MPP due to estimation error. The finding that there is no practical difference in MPP between the 9 and 17 AA composite is consistent with recent research (Zeidner et al., 2003b). In addition, we considered the practical effects on MPP of several operational issues related to how test composites, and their respective weights, are estimated. Whereas, constraining weights to be positive did not meaningfully impact MPP, standardizing predicted performance scores to have equal means and variance did. Specifically, standardized weights produced somewhat lower (on average) overall MPP than unstandardized weights, but a more equitable distribution in MPP across jobs and, in some cases, higher MPP for jobs (i.e., Combat) critical to the Army's mission. Because it already integrates important operational constraints, a classification system based on standardized weights will require fewer interventions that might otherwise negate the intended benefits of regression-weighted composites. In considering outstanding implementation issues, the most prominent issue pertains to cut scores for the 17 and 150 AA composites. We estimated cut scores for the 17 and 150 AA composites, equating the new cut scores with cut scores for the 9 AA composites, so as to produce comparable MPP values. Cut scores and overall selection ratio by MOS based on the 17 and 150 AA composites, with accompanying documentation on our cut score equating method, are reported in Appendix G. As can be seen from these data, moving to the 17 or 150 AA composites would produce changes in cut scores. While these changes are generally small, 1-3 points, even small changes could be associated with substantial costs given the number of MOS affected. More importantly, the selection ratios (percentage of recruits qualifying for an MOS) likewise change. For example, at the 17 job family levels, the change in percentage qualifying ranges from less than 1% to 3%, whereas with the 150 job family level the percentage change ranges from less than 1% to 18%. To ensure comparable fill-rates with the new cut scores would necessitate potentially even larger changes in cut scores. Therefore, adoption of the 17 or 150 AA composites for classification would necessitate substantive changes in cut scores to achieve comparable levels of MPP or fill-rates. #### Recommendations Based on the above findings, we recommend adoption of the 9 AA composites based on standardized weights for use in assigning recruits to entry-level MOS. There are two reasons for this. First, consistent with previous research (Zeidner et al., 2003b), moving from 9 to 17 AA composites does not produce a practically significant increase in either overall MPP or MPP by MOS. This is particularly true once one takes into account estimation error in MPP. Coupled with the administrative costs and other management-related issues associated with changing existing cut scores based on the 9 composites, the technical and/or practical advantages to adopting the 17 AA test composites, as currently constructed, are few. The same holds for the 150 AA test composites, whose weights are considerably less stable and reliable than the 9 or 17 composites and, thereby, less technically defensible and feasible for supporting assignment decisions. The second advantage to adopting the 9 AA composites based on standardized weights is that they promote a more equitable distribution of MPP across MOS than unstandardized composites. Practically, this means that lower quality recruits are less likely to be disproportionately assigned to selected MOS, specifically those with lower ASVAB predictive validities, and vice versa with higher quality recruits. Standardized composites accomplish this by statistically approximating critical operational requirements, such as MOS distributional requirements, when assigning recruits to MOS. In doing so, standardized composites retain the classification efficiency of regression-weighted composites, while taking into account practical operational concerns that might otherwise reduce their benefits. If unstandardized composites were used, Army classification managers and other decision-makers would have to make greater adjustments to assignments based on regression-weighted composites in order to achieve practical objectives (i.e., distributional requirements, fill-rates). Since these adjustments are discretionary and not likely to be implemented systematically across recruits and/or MOS, they could be expected to negate the classification potential of the 9 (standardized) composites. In sum, standardized composites will more effectively balance the optimization of aggregate Soldier performance with the need to satisfy equally important, practical requirements. ### Suggestions for Future Research There are several avenues for future research. First, future research should consider the effects of basic and technical training on Soldier proficiency and its implications for Army classification. That is, as currently computed, estimates of aggregate Soldier performance, such as MPP, do not consider training effects, although these effects are present. That is, while test composites, and their respective weights, are corrected to the Army Input population, the ASVAB-SQT validities on which they are based are conditioned on those recruits who: (a) successfully passed training (i.e., lower performers have a greater probability of attriting during technical training); and (b) experienced the performance-enhancing effects of training (i.e., as training increases recruit performance). Therefore, the contributions of basic and technical training to Soldier proficiency and its implications for classification, and measures of its effectiveness (i.e., MPP), are not readily understood. More importantly, understanding the effects of training on Soldier proficiency could prove beneficial for operational reasons. That is, when making entrylevel assignments, considering the performance-enhancing effects of training is likely to open up a greater number of jobs any given recruit could be assigned
to, particularly those recruits whose AA scores substantially limit the number of jobs for which he/she qualifies. If more jobs are available to a recruit, the differentiation (differential validity) among the jobs has a greater opportunity to contribute to classification efficiency, since the ability of job-specific test composites to differentiate among the jobs is maximized. This will be especially true for recruits with lower AA scores, who traditionally have been difficult to place. In sum, methodologies that integrate the effects of training and classification into a single personnel management framework are likely to prove beneficial for both research and operational purposes. Second, over the past decade, there has been increasing recognition that the nature of work and job performance in many jobs has changed (Howard, 1995; Ilgen & Pulakos, 1999; Schmitt & Chan, 1998). In some cases, these changes have been dramatic. The increasing use of technology, the shift to team-based or service-oriented work arrangements, and rapid environmental and organizational changes all necessitate different types of skills and aptitudes (i.e., adaptability, interpersonal skills, customer service orientation), or different levels of the same aptitudes, for successful performance than did jobs a decade ago. These changes have not only impacted jobs in the civilian sector, but military jobs as well. For example, over the past dozen years, the technological complexity of jobs, such as Combat (CO), has grown substantially with the advent of new technologies and weaponry. However, the current analyses are based on a population of jobs and predictor-criterion data that are fifteen years old. As a result, the proposed test composites, and their respective weights, are unlikely to reflect these changes. If the population of Army jobs and magnitude of predictor-criterion relations have changed, as a function of systematic changes in the content and performance requirements of these jobs, classification decisions based on the proposed composites are likely to be affected. Third, future research is needed that constructs and evaluates the classification potential of composites that include noncognitive variables, such as personality and vocational interests. There is a growing body of research from applied psychology showing that personality and other noncognitive variables are predictive of performance across a wide range of occupations and are generally uncorrelated with and add incremental validity over and above cognitive ability, and that predictive validities differ by job content and performance requirements (Barrick & Mount, 1991; Barrick, Mount, & Judge, 2001; Hough & Furnham, 2003; McHenry, Toquam, Hanson, & Ashworth, 1990; Mount & Barrick, 1995; Mount, Barrick, & Stewart, 1998; Schmidt & Hunter, 1998). More specific to the Army, research from Project A demonstrated that predictor composites reflecting different mixes of cognitive aptitudes, personality traits, interests, and background characteristics more strongly differentiated and predicted performance, including technical proficiency, across jobs than predictor composites based on aptitude alone (Wise, McHenry, & Campbell, 1990). On the basis of this evidence, noncognitive variables, specifically personality and vocational interests, could greatly extend the classification potential of cognitively-based composites. We presently know of few studies (e.g., Wise et al., 1990) that consider the effectiveness of composites incorporating noncognitive variables in a multiple job context. #### Conclusion In an earlier report (Diaz et al., 2004) we independently replicated Zeidner, Johnson, and colleagues' method of empirically deriving AA composites, including the 9 AA composites currently in operational use. The primary purpose of the current report was to evaluate the efficacy of the proposed AA composites, and corresponding job families, to meet the Army's classification objectives. Presently, there has been a long-standing debate about the degree to which regression-weighted composites tailored to specific jobs based on test batteries assessing specialized aptitudes and abilities, such as the ASVAB, produce differences in validities that represent "true" between-job differences and *not* differences due to sampling error or other artifacts (Hunter, 1983, 1985; Hunter et al., 1985; Schmidt et al., 1988; Schmidt et al., 1981; Zeidner & Johnson, 1994; Zeidner et al., 1997). To address these issues, we tested the stability and differential validity of the proposed AA composites and accompanying job families, particularly the 17 and 150 relative to the 9 AAs, and their practical effects on classification efficiency, as measured by MPP. Overall, our findings supported the continued use of standardized AA composites when assigning recruits to entry-level MOS based on the 9 job families proposed by Zeidner and colleagues. We recommended these composites over the 17 and 150 AA composites for two reasons. First, consistent with recent research (Zeidner et al., 2003b), moving from 9 to 17 AA composites did not produce practically significant increases in either overall MPP or MPP by MOS. Second, and more importantly, the 9 AA composites based on standardized weights displayed operationally desirable properties relative to unstandardized composites. More specifically, standardized composites can be expected to more effectively balance the optimization of aggregate soldier performance with the need to satisfy quality distribution requirements. In summary, when coupled with the administrative costs and other management-related issues associated with changing existing cut scores based on the existing composites, the technical and/or practical advantages to adopting the 17 or 150 AA test composites, as currently constructed, are few. ### **REFERENCES** - Barrick, M.R., & Mount, M.K. (1991). The Big Five personality dimensions and job performance: A meta-analysis. *Personnel Psychology*, 44, 1-26. - Barrick, M.R., Mount, M.K., & Judge, T.A. (2001). Personality and performance at the beginning of the new millennium: What do we know and where do we go next. *International Journal of Selection & Assessment*, 9, 9-30. - Belsley, D.A. (1991). Conditioning diagnostics: collinearity and weak data in regression. New York, NY: J. Wiley. - Brogden, H.E. (1959). Efficiency of classification as a function of number of jobs, percent rejected, and the validity and intercorrelation of job performance estimates. *Educational and Psychological Measurement*, 19, 181-190. - Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates. - Desmarais, L.B., & Sackett, P.R. (1993). Investigating a cognitive complexity hierarchy of jobs. Journal of Vocational Behavior, 43, 279-297. - Diaz, T., Ingerick, M., & Lightfoot, M.A. (2004). Replication of Zeidner, Johnson, and colleagues' method for estimating Army AA composites (Study Report 2004-04). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. - Gottfredson, L.S. (1986). Occupational Aptitude Patterns Map: Development and implications for a theory of job aptitude requirements. *Journal of Vocational Behavior*, 29, 254-291. - Greene, W.H. (1997). Econometric analysis (3rd ed.). Upper Saddle River, NJ: Prentice-Hall. - Greenston, P., Rumsey, M., Zeidner, J., & Johnson, C.D. (2001, September 7). U.S. Army Research Institute classification research and the development of new composites. Presentation made to Expert Review Panel, Alexandria, VA. - Horst, P. (1954). A technique for the development of a differential predictor battery. *Psychological Monographs*, 68(9, Whole No. 390). - Horst, P. (1955). A technique for the development of an absolute prediction battery. *Psychological Monographs*, 69(5, Whole No. 390). - Hough, L.M., & Furnham, A. (2003). Use of personality variables in work settings. In W.C. Borman, D.R. Ilgen, & R.J. Klimoski (Eds.), *Handbook of psychology: Industrial and organizational psychology* (Vol. 12, pp. 131-169). New York: John Wiley & Sons. - Howard, A. (Ed.) (1995). The changing nature of work. San Francisco: Jossey-Bass. - Hunter, J.E. (1983). The prediction of job performance in the military using ability composites: The dominance of general cognitive ability over specific aptitudes. Rockville, MD: Research Applications. - Hunter, J.E. (1985). Differential validity across jobs in the military. Rockville, MD: Research Applications. - Hunter, J.E., Crosson, I.J., & Friedman, D.H. (1985). The validity of the Armed Services Vocational Aptitude Battery for civilian and military job performance. Rockville, MD: Research Applications. - Hunter, J.E., & Hunter, R.F. (1984). Validity and utility of alternative predictors of performance. Psychological Bulletin, 96, 72-98. - Hunter, J.E., & Schmidt, F.L. (1990). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park, CA: Sage Publications. - Ilgen, D.R., & Pulakos, E.D. (Eds.) (1999). The changing nature of performance: Implications for staffing, motivation, and development. San Francisco: Jossey-Bass. - Johnson, C.D., Zeidner, J., & Leaman, J.A. (1992). Improving classification efficiency by restructuring Army job families (TR-947-92). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. - Lightfoot, M.A., Diaz, T.E., & Vladimirsky, Y. (1997). Evaluation of Lightfoot's cluster reliability and validation method using Army occupational analysis data (FR-97-04). Alexandria, VA: Human Resources Research Organization. - Mitchell, K.J., & Hanser, L.M. (1984). The 1980 youth population norms: Enlistment and occupational classification standards in the Army (TR-84). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. - Mount, M.K., & Barrick, M.R. (1995).
The Big Five personality dimensions: Implications for research and practice in human resources management. Research in Personnel and Human Resources Management, 13, 153-201. - Mount, M.K., Barrick, M.R., & Stewart, G.L. (1998). Five-factor model of personality and performance in jobs involving interpersonal interactions. *Human Performance*, 11, 145-165. - Pearlman, K. (1980). Job families: A review and discussion of their implications for personnel selection. *Psychological Bulletin*, 87, 1-28. - Pedhazur, E.J. (1997). Multiple regression in behavioral research: Explanation and prediction (3rd ed.). New York: Harcourt Brace. - Ree, M.J., & Earles, J.A. (1991). Predicting training success: Not much more than g. *Personnel Psychology*, 44, 321-332. - Ree, M.J., Earles, J.A., & Teachout, M.S. (1994). Predicting job performance: Not much more than g. *Journal of Applied Psychology*, 79, 518-524. - Sackett, P.R. (1988). Exploring strategies for clustering military occupations. In B.F. Green & A.K. Wigdor (Eds.), Linking military enlistment standards to job performance: Report of a workshop (pp. 45-75). Washington, DC: National Academy Press. - Schmidt, F.L., & Hunter, J.E. (1977). Development of a general solution to the problem of validity generalization. *Journal of Applied Psychology*, 62, 529-540. - Schmidt, F.L., & Hunter, J.E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. *Psychological Bulletin*, 124, 262-274. - Schmidt, F.L., Hunter, J.E., & Larson, M. (1988). General cognitive ability versus general and specific aptitudes in the prediction of training performance: Some preliminary findings (DO-0053). San Diego, CA: Navy Personnel Research and Development Center. - Schmidt, F.L., Hunter, J.E., & Pearlman, K. (1981). Task differences as moderators of aptitude test validity in selection: A red herring. *Journal of Applied Psychology*, 66, 166-185. - Schmitt, N., & Chan, D. (1998). Personnel selection: A theoretical approach. Thousand Oaks, CA: Sage Publications. - Statman, M.A. (1992, August). Developing optimal predictor equations for differential job assignment and vocational counseling. Paper presented at the annual meeting of the American Psychological Association, Washington, DC. - Statman, M.A., Gribben, M., Harris, D.A., & Hoffman, G.R. (1994). Occupational analysis and job structures (FR-94-28). Alexandria, VA: Human Resources Research Organization. - Tabachnick, B.G., & Fidell, L.S. (1996). *Using multivariate statistics* (3rd ed.). New York: HarperCollins Publishers. - Wise, L.L., McHenry, J., & Campbell, J.P. (1990). Identifying optimal predictor composites and testing for generalizability across jobs and performance factors. *Personnel Psychology*, 43, 355-366. - Zeidner, J., & Johnson, C.D. (1994). Is personnel classification a concept whose time has passed? In M.G. Rumsey, C.G. Walker, & J.H. Harris (Eds.), Personnel selection and classification: New directions (pp. 377-410). Hillsdale, NJ: Lawrence Erlbaum Associates. - Zeidner, J., Johnson, C.D., & Scholarios, D.M. (1997). Evaluating military selection and classification systems in the multiple job context. *Military Psychology*, 9, 169-186. - Zeidner, J., Johnson, C.D., Vladimirsky, Y., & Weldon, S. (2000). Specifications for an operational two-tiered classification system for the Army, Volume 1 (TR-1108-VOL-1). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. - Zeidner, J., Johnson, C.D., Vladimirsky, Y., & Weldon, S. (2001). Reducing the number of tests in the Armed Services Vocational Aptitude Battery (ASVAB) (SN-2001-01). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. - Zeidner, J., Johnson, C.D., Vladimirsky, Y., & Weldon, S. (2003a). *Determining composite* validity coefficients for Army jobs and job families (SN-2003-02). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. - Zeidner, J., Johnson, C.D., Vladimirsky, Y., & Weldon, S. (2003b). Determining mean predicted performance for Army job families (SN-2003-03). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. APPENDIX A: IDENTIFYING WEAK TEST COMPOSITES BY JOB FAMILY Table 1 Chi-Square (χ^2) Significance Tests and Observed Significance Values (p) of Full Test Composites for 9 and 17 Job Families | *************************************** | Job | Family | Configura | tion | | |---|-----------|--------|-----------|-----------|-------| | | 9 | • | | 17 | | | JF | χ^2 | p | JF | χ^2 | p | | CL | 11558.522 | .0005 | CL1 | 6818.712 | .0005 | | CO | 4799.789 | .0005 | CL2 | 6060.484 | .0005 | | EL | 8026.876 | .0005 | CO1 | 2005.642 | .0005 | | FA | 3900.326 | .0005 | CO2 | 4918.017 | .0005 | | GM | 7268.939 | .0005 | EL1 | 5036.132 | .0005 | | MM | 15148.526 | .0005 | EL2 | 3429.786 | .0005 | | OF | 6980.239 | .0005 | EL3 | 1773.143 | .0005 | | SC | 4153.739 | .0005 | FA | 3900.326 | .0005 | | ST | 5224.271 | .0005 | GM1 | 3952.679 | .0005 | | | | | GM2 | 3411.606 | .0005 | | | | | MM1 | 13237.128 | .0005 | | | | | MM2 | 2610.497 | .0005 | | | | | OF | 6980.239 | .0005 | | | | | SC | 2831.936 | .0005 | | | | | ST1 | 2047.810 | .0005 | | | | | ST2 | 945.654 | .0005 | | | | | ST3 | 2857.677 | .0005 | Table 2 Chi-Square (χ^2) Significance Tests and Observed Significance Values (p) of Full Test Composites for 150 Job Families | 1 est Co | omposites for | ' 130 JO | o r amilies | | | | | | |-------------|---------------|----------|-------------|----------|-------|-------------|----------|-------| | JF | χ^2 | p | JF | χ^2 | p | JF | χ^2 | p | | 11B | 709.341 | .0005 | 41C | 89.921 | .0005 | 67U | 641.690 | .0005 | | 11C | 1327.798 | .0005 | 44B | 618.032 | .0005 | 67V | 293.000 | .0005 | | 11H | 1436.565 | .0005 | 44E | 406.202 | .0005 | 67Y | 314.778 | .0005 | | 11 M | 737.056 | .0005 | 45B | 424.318 | .0005 | 68B | 47.952 | .0005 | | 12B | 1360.064 | .0005 | 45D | 104.433 | .0005 | 68D | 147.108 | .0005 | | 12C | 621.414 | .0005 | 45E | 112.815 | .0005 | 68F | 229.293 | .0005 | | 12F | 202.128 | .0005 | 45K | 270.569 | .0005 | 68G | 379.430 | .0005 | | 13B | 1450.504 | .0005 | 45L | 110.801 | .0005 | 68J | 183.517 | .0005 | | 13C | 330.875 | .0005 | 45N | 230.564 | .0005 | 68M | 85.922 | .0005 | | 13E | 871.916 | .0005 | 45T | 153.416 | .0005 | 68N | 171.416 | .0005 | | 13F | 1249.410 | .0005 | 46Z | 92.747 | .0005 | 68Z | 316.973 | .0005 | | 13M | 160.805 | .0005 | 51B | 612.184 | .0005 | 71D | 265.462 | .0005 | | 13N | 608.520 | .0005 | 51K | 206.542 | .0005 | 71G | 196.133 | .0005 | | 13R | 114.789 | .0005 | 51M | 53.404 | .0005 | 71L | 891.946 | .0005 | | 14D | 255.150 | .0005 | 51R | 245.330 | .0005 | 71 M | 261.790 | .0005 | | 16E | 213.501 | .0005 | 51T | 101.361 | .0005 | 72E | 407.533 | .0005 | | 16P | 329.620 | .0005 | 52C | 133.635 | .0005 | 72G | 374.477 | .0005 | | 16R | 656.949 | .0005 | 52D | 2804.757 | .0005 | 73C | 347.823 | .0005 | | 16S | 873.658 | .0005 | 54B | 1151.399 | .0005 | 73D | 124.266 | .0005 | | 19D | 1731.238 | .0005 | 55B | 732.155 | .0005 | 74B | 297.171 | .0005 | | 19E | 1598.995 | .0005 | 55D | 104.757 | .0005 | 75B | 1027.360 | .0005 | | 19K | 2109.316 | .0005 | 57E | 48.911 | .0005 | 75C | 440.022 | .0005 | | 24Z | 94.226 | .0005 | 62B | 2584.832 | .0005 | 75D | 382.113 | .0005 | | 25S | 185.047 | .0005 | 62E | 613.813 | .0005 | 75E | 297.767 | .0005 | | 27E | 149.253 | .0005 | 62F | 279.622 | .0005 | 75F | 84.000 | .0005 | | 29V | 280.653 | .0005 | 62J | 301.906 | .0005 | 76J | 145.302 | .0005 | | 31C | 1298.584 | .0005 | 63B | 4663.062 | .0005 | 76P | 754.372 | .0005 | | 31K | 1817.933 | .0005 | 63D | 483.193 | .0005 | 76V | 1469.456 | .0005 | | 31L | 1010.712 | .0005 | 63E | 784.828 | .0005 | 76X | 232.600 | .0005 | | 31N | 171.582 | .0005 | 63G | 192.546 | .0005 | 77F | 2262.809 | .0005 | | 31P | 65.980 | .0005 | 63H | 787.042 | .0005 | 77W | 188.913 | .0005 | | 31Q | 448.591 | .0005 | 63J | 439.219 | .0005 | 81L | 51.228 | .0005 | | 31R | 1641.633 | .0005 | 63N | 397.469 | .0005 | 82C | 435.702 | .0005 | | 31S | 53.965 | .0005 | 63S | 853.245 | .0005 | 88H | 218.646 | .0005 | | 31V | 1158.409 | .0005 | 63T | 851.795 | .0005 | 88M | 1857.942 | .0005 | | 35E | 306.780 | .0005 | 63W | 2809.063 | .0005 | 88N | 106.659 | .0005 | | 35H | 25.948 | .0005 | 63Y | 495.336 | .0005 | 91A | 965.583 | .0005 | | 35J | 212.899 | .0005 | 67N | 490.582 | .0005 | 91D | 187.595 | .0005 | | 35N | 195.246 | .0005 | 67R | 88.011 | .0005 | 91E | 129.463 | .0005 | | 36M | 265.538 | .0005 | 67T | 519.506 | .0005 | 91F | 20.898 | .0039 | Table 2 (cont'd) | Table 2 (cont u) | | | |------------------|----------|----------| | JF | χ^2 | <u>p</u> | | 91G | 76.993 | .0005 | | 91K | 107.459 | .0005 | | 91M | 98.880 | .0005 | | 91P | 153.012 | .0005 | | 91Q | 218.886 | .0005 | | 91R | 177.217 | .0005 | | 91S | 172.979 | .0005 | | 91T | 50.632 | .0005 | | 91Z | 89.284 | .0005 | | 92A | 1194.597 | .0005 | | 92G | 2333.944 | .0005 | | 92M | 78.059 | .0005 | | 92R | 137.606 | .0005 | | 92Y | 521.576 | .0005 | | 93C | 100.394 | .0005 | | 93P | 784.817 | .0005 | | 95B | 952.766 | .0005 | | 95C | 50.307 | .0005 | | 96B | 345.164 | .0005 | | 96D | 258.185 | .0005 | | 96R | 335.927 | .0005 | | 97B | 90.395 | .0005 | | 98C | 110.505 | .0005 | | 98G | 87.785 | .0005 | | 98H | 217.285 | .0005 | | 98Z | 169.611 | .0005 | | 55G + 93F | 123.553 | .0005 | | 27Z + 29Z | 265.223 | .0005 | | 25M + 25Z + 97E | 91.532 | .0005 | | 15E + 16J | 63.173 | .0005 | Table 3 T-Tests and Observed Significance Values (p) of Test Composite Weights by ASVAB Subtest for 9 Job Families | | | d | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | |---------|----|--------|---------|---------|---------|--------|---------|---------
---------|--------|----------------------|---| | | MK | SE p | 0.0069 | 0.0109 | 0.0085 | 0.0145 | 0.0092 | 0.0075 | 0.0104 | 0.0112 | 0.0101 | | | | | | -27.412 | | | | | | | | | | | | | р | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | | | AS | SE | 0.0055 | 0.0000 | 0.0069 | 0.0116 | 0.0077 | 0.0064 | 0.0085 | 0.0093 | 0.0076 | | | Subtest | | t | -4.818 | -13.600 | -19.386 | -9.720 | -24.670 | -52.373 | -20.457 | -9.231 | -10.959 | | | ASVAB | | d | 0.0005 | | | 0.0005 | | | | | | | | | AR | SE | 0.0066 | 0.0105 | 0.0085 | 0.0136 | 0.0084 | 0.0069 | 0.0094 | 0.0109 | 0.008 | į | | | | 1 | -37.961 | | | -8.934 | | | | | | ŀ | | | | d | 1.0000 | 0.0005 | 0.0134 | 0.0053 | 0.0005 | 0.0112 | 0.0005 | 1.0000 | -3.001 0.0110 0.0027 | | | | CS | SE | 0.0071 | 0.0119 | 0.0094 | 0.0153 | 0.0097 | 0.0079 | 0.0108 | 0.0124 | 0.0110 | | | | | 1 | 0.00 | 4.218 | -2.473 | -2.785 | -6.984 | -2.537 | -3,701 | 0.00 | -3.001 | | | | | JF | ט | ۶ | | H
A | E | M | OF | , C | S C | | Table 3 (cont'd) | | | | - | A. | ASVAB Subtest | rtest | | | | | |----------|---------|--------|--------|---------|----------------------|--------|---------|--------|--------|-------| | | | MC | | | EI | | | VE | | | | JF | JF t | SE | d | t SE | SE | d | t | SE | | N | | CL | -6.381 | | 0.0005 | 4.914 | 0.0063 | 0.0005 | -32.112 | 0.0065 | 0.0005 | 49018 | | S | -10.092 | 0.0099 | | -5.784 | 0.0105 | 0.0005 | -6.576 | 0.0112 | | 41910 | | EL. | -11.326 | 0.0074 | | -13.352 | 0.0082 | 0.0005 | -19.229 | 0.0081 | | 27776 | | FΑ | -9.072 | 0.0130 | | -3.530 | 0.0139 | 0.0005 | -6.999 | 0.0144 | | 11740 | | GM
GM | -12.101 | 0.0078 | | -12.415 | 0.0087 | 0.0005 | -7.718 | 0.0088 | | 23572 | | MM | -19.342 | 0.0068 | | -15.658 | 0.0072 | 0.0005 | -10.724 | 0.0074 | | 37645 | | OF | -11.854 | 0.0092 | | -6.989 | 0.0098 | 0.0005 | -11.032 | 0.0103 | | 21300 | | SC | -7.679 | 0.0100 | | -10.486 | 0.0107 | 0.0005 | -13.846 | 0.0115 | | 13981 | | ST | -10.981 | 0.0086 | | -6.325 | 0.0089 | 0.0005 | -18.466 | 0.0110 | | 30868 | | | | | 1 | | (| - | 1 1 1 | | | | Table 4 T-Tests and Observed Significance Values (p) of Test Composite Weights by ASVAB Subtest for 17 Job Families | | | d | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | |---------|----|-----------|---------|---------|--------|---------|--------------------------------------|---------|---------|--------|---------|---------|---------|---------|---------|--------|---------|--------|---------|-----------------| | | MK | SE | 0.0089 | 0.0097 | 0.0154 | 0.0131 | 0.0113 | 0.0131 | 0.0175 | 0.0145 | 0.0133 | 0.0129 | 0.0084 | 0.0163 | 0.0104 | 0.0143 | 0.0153 | 0.0241 | 0.0148 | | | | | 1 | | | | | -11.526 | | | | | | | | | | | | | | | | | р | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | | | AS | SE | 0.0074 | 0.0076 | 0.0127 | 0.0107 | 0.0092 | 0.0103 | 0.0144 | 0.0116 | 0.0111 | 0.0107 | 0.0071 | 0.0149 | 0.0085 | 0.0120 | 0.0125 | 0.0161 | 0.0119 | | | Subtest | | t | 0.000 | -8.037 | -9.142 | -12.448 | -12.715 0.0111 0.0005 -17.925 | -12.581 | 4.595 | -9.720 | -18.014 | -16.968 | -51.871 | -13.146 | -20.457 | -7.143 | -6.294 | -3.566 | -9.019 | d italiainad | | ASVAB | | þ | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.000 | 0.0005 | 0.0005 | one hold one | | | AR | SE | 0.0085 | 0.0093 | 0.0148 | 0.0125 | 0.0111 | 0.0130 | 0.0177 | 0.0136 | 0.0120 | 0.0118 | 0.0077 | 0.0150 | 0.0094 | 0.0139 | 0.0142 | 0.0244 | 0.0138 | (30 / ") | | | | t | -30.305 | -25.356 | 4.543 | -9.382 | -12.715 | -9.597 | -11.127 | -8.934 | -17.144 | -8.848 | -13.940 | -10.840 | -17.799 | -9.904 | -10.378 | -8.315 | -11.429 | · oimition | | | | JF t SE p | 1.0000 | 1.0000 | 0.0072 | 0.0005 | 0.4948 | 0.0033 | 0.3021 | 0.0053 | 0.0005 | 0.0005 | 0.0052 | 0.9675 | 0.0005 | 1.0000 | 0.0013 | 0.3610 | 0.2496 | f atatiotisally | | | CS | SE | 0.0092 | 0.0100 | 0.0168 | 0.0142 | 0.0126 | 0.0143 | 0.0194 | 0.0153 | 0.0140 | 0.0135 | 0.0088 | 0.018I | 0.0108 | 0.0156 | 0.0174 | 0.0252 | 0.0163 | 200 000 | | | | 1 | 0.000 | 0.000 | -2.688 | 4.155 | -0.683 | -2.936 | -1.032 | -2.785 | 4.406 | -5.434 | -2.795 | -0.041 | -3.701 | 0.000 | -3.219 | -0.913 | -1.151 | 7 50000 70030 | | | | JF | CL1 | CL2 | C01 | C02 | EL1 | EL2 | EL3 | FA | GM1 | GM2 | MM1 | MM2 | OF | SC | ST1 | ST2 | ST3 | 17. T. T. | Table 4 (cont'd) | | N | 5 27480 | ` ' | | • | 5 13919 | | | | | | | | | | | 5 12653 | | | |----|----|--------------|---------|--------|--------|---------|--------|---------|--------|------|---------|--------|---------|---------|---------|---------|----------------|---------|---------| | | d | 0.0005 | 0.000 | 0.00 | 0.000 | 0.0005 | 0.0005 | 0.00 | 0.0005 | 0.00 | | 0.000 | 0.0005 | 0.0005 | 0.0005 | 0.00 | 0.0005 | 0.0005 | 0.0005 | | VE | SE | 0.0087 | 0.0091 | 0.0158 | 0.0133 | 0.0111 | 0.0124 | 0.0166 | 0.0144 | 0 | 0.0123 | 0.0126 | 0.0083 | 0.0164 | 0.0103 | 0.0149 | 0.0160 | 0.0273 | 0.0158 | | | 1 | -31.178 | -18.186 | -3.543 | -7.849 | -13.568 | -9.562 | -14.707 | -6.999 | , | -6.916 | 4.239 | -6.643 | -11.193 | -11.032 | -10.646 | -9.179 | -10.047 | -13.031 | | | d | 1.0000 | 0.0005 | 0.0010 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 1 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0508 | 0.0005 | | H | SE | 0.0082 | 0.0089 | 0.0149 | 0.0125 | 0.0110 | 0.0124 | 0.0170 | 0.0139 | | 0.0125 | 0.0120 | 0.0082 | 0.0157 | 0.0098 | 0.0134 | 0.0148 | 0.0188 | 0.0136 | | | 1 | 0.000 | -5.155 | -3.303 | -6.528 | -11.060 | -8.849 | -4.696 | -3.530 | | -11.376 | -6.423 | -15.296 | 4.162 | -6.989 | -8.306 | -3.857 | -1.953 | -5.107 | | | d | 1.0000 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | ZM | SE | 0.0074 | 0.0081 | 0.0140 | 0.0116 | 0.0100 | 0.0110 | 0.0155 | 0.0130 | | 0.0112 | 0.0108 | 0.0075 | 0.0155 | 0.0092 | 0.0129 | 0.0138 | 0.0183 | 0.0134 | | | t | CL1 0.000 0. | -8.094 | -6.850 | -9.172 | -8.403 | -8.306 | 4.275 | -9.072 | | -8.133 | -8.961 | -17.437 | -8.371 | -11.854 | -5.980 | -7.538 | -3.576 | -7.859 | | | JF | CL1 | CI.2 | CO | CO2 | ELI | EL.2 | EL3 | FA | GM1 | | GM2 | MM1 | MM2 | OF | SC | STI | ST2 | ST3 | Table 5 T-Tests and Observed Significance Values (p) of Test Composite Weights by ASVAB Subtest for 150 Job Families | | | d | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0154 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0009 | 0.0005 | 0.1813 | 0.9534 | 0.0086 | 0.0011 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.7543 | 0.0005 | 0.6320 | |---------|----|-----|--------| | | MK | SE | 0.0199 | 0.0190 | 0.0197 | 0.0204 | 0.0193 | 0.0297 | 0.0567 | 0.0196 | 0.0490 | 0.0284 | 0.0204 | 0.0455 | 0.0268 | 0.055I | 0.0499 | 0.0506 | 0.0369 | 0.0297 | 0.0286 | 0.0196 | 0.0188 | 0.0187 | 0.0520 | 0.0627 | 0.0435 | | | | 1 | -7.747 | -6.242 | -9.077 | -4.697 | -8.191 | -5.397 | -2.422 | -6.551 | -5.107 | -7.536 | -7.949 | -3.334 | -7.532 | -1.337 | -0.058 | -2.628 | -3.270 | -3.786 | 4.502 | -5.542 | -5.566 | -3.966 | -0.313 | 4.440 | -0.479 | | | | р | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.1012 | 0.0005 | 0.0461 | 0.0005 | 0.0005 | 0.0005 | 0.0054 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0081 | 0.0265 | 0.5914 | | | AS | SE | | | 0.0164 | 0.0174 | 0.0162 | 0.0259 | 0.0457 | 0.0161 | 0.0372 | 0.0233 | 0.0171 | 0.0419 | 0.0228 | 0.0471 | 0.0443 | 0.0469 | 0.0349 | 0.0255 | 0.0243 | 0.0165 | 0.0163 | 0.0153 | 0.0461 | 0.0675 | 0.0365 | | Subtest | | 1 | -5.526 | ASVAB. | | d | 0.0778 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0086 | 0.0396 | 0.0006 | 0.7187 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.000 | 0.0005 | 0.0005 | 0.0228 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0022 | 0.5122 | 0.0005 | | | AR | SE | 0.0194 | 0.0191 | 0.0194 | 0.0200 | 0.0185 | 0.0300 | 0.0506 | 0.0185 | 0.0426 | 0.0299 | 0.0209 | 0.0456 | 0.0236 | 0.0501 | 0.0472 | 0.0464 | 0.0347 | 0.0273 | 0.0275 | 0.0191 | 0.0185 | 0.0184 | 0.0561 | 0.0626 | 0.0434 | | | | + | -1.764 | -6.984 | 4.156 | 4.239 | 4.191 | -2.626 | -2.058 | -3.427 | 0.360 | -8.452 | -7.452 | 4.056 | -3.932 | -3.311 | -6.110 | -3.659 | -2.276 | -6.550 | -5.164 | -5.477 | -4.811 | -8.803 | -3.057 | 0.655 | 4.786 | | | | d | 0.1648 | 0.0836 | 0.0028 | 0.0057 | 0.0005 | 0.0449 | 0.1753 | 0.0947 | 0.5224 | 0.7449 | 0.0127 | 0.8551 | 0.8860 | 0.5474 | 0.1026 | 0.0292 | 0.2057 | 0.3393 | 0.4052 | 0.1205 | 0.0005 | 0.0178 | 0.7767 | 0.3300 | 0.4676 | | | GS | SE | 0.0227 | 0.0216 | 0.0222 | 0.0237 | 0.0218 | 0.0352 | 0.0632 | 0.0215 | 0.0536 | 0.0330 | 0.0236 | 0.0547 | 0.0282 | 0.0584 | 0.0549 | 0.0540 | 0.0455 | 0.0326 | 0.0303 | 0.0223 | 0.0228 | 0.0213 | 0.0600 | 0.0675 | 0.0510 | | | | t | -1.389 | -1.730 | -2.985 | -2.765 | -3.620 | -2.005 | 1.355 | -1.671 | -0.640 | 0.325 | -2.492 | -0.183 | 0.143 | -0.602 | -1.632 | -2.181 | -1.265 | -0.956 | -0.832 | -1.553 | -3.568 | -2.369 | 0.284 | -0.974 | 0.726 | | | | JF. | 118 | 11C | 11H | 11M | 12B | 12C | 12F | 13B | 13C | 13E | 13F | 13M | 13N | 13R | 14D | 16E | 16P | 16R | 168 | 19D | 19E | 19K | 24Z | 25S | 27E | Table 5 (cont'd) | | | d | 0.2021 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0016 | 0.0005 | 0.0005 | 0.0097 | 0.0005 | 0.0005 | 0.0104 | 0.0005 | 0.0871 | 0.0005 | 0.1414 | 0.0005 | 0.0005 | 0.0189 | 0.2564 | 0.0358 | 0.0073 | 0.0036 | 0.0005 | 0.0394 | | |---------------|----|----|--------|--------|--------
---------|--------|--------|--------|--------|--------|---------|--------|--------|---------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------------------------|---| | | MK | SE | 0.0485 | 0.0183 | 0.0181 | 0.0248 | 0.0501 | 0.0571 | 0.0358 | 0.0176 | 0.0750 | 0.0198 | 0.0417 | 0.0903 | 0.0375 | 0.0528 | 0.0371 | 0.0738 | 0.0378 | 0.0428 | 0.0509 | 0.0583 | 0.0601 | 0.0446 | 0.0594 | 0.0544 | 0.0625 | | | | | t | -1.275 | -8.450 | -9.104 | -4.095 | 4.447 | -3.161 | 4.456 | -6.279 | -2.586 | -7.730 | -3.569 | -2.561 | -5.471 | -1.711 | -3.563 | -1.471 | -3.969 | -6.106 | -2.348 | -1.135 | -2.099 | -2.683 | -2.908 | 4.304 | 2.060 | | | | | þ | 0.0027 | 0.0005 | 0.0005 | 0.0005 | 0.0217 | 0.0375 | 0.0005 | 0.0005 | 0.2180 | 0.0005 | 0.0005 | 0.8175 | 0.0695 | 0.0305 | 0.0005 | 0.0005 | 0.0005 | 0.0028 | 0.0005 | 0.0012 | 0.0020 | 0.0005 | 0.0190 | 0.0005 | 0.0005 | | | | AS | SE | 0.0384 | 0.0159 | 0.0151 | 0.0211 | 0.0356 | 0.0493 | 0.0290 | 0.0147 | 0.0445 | 0.0166 | 0.0357 | 0.0616 | 0.033I | 0.0400 | 0.0297 | 0.0604 | 0.0325 | 0.0453 | 0.0467 | 0.0536 | 0.0507 | 0.0395 | 0.0585 | 0.0467 | 0.0470 | | | Subtest | | t | -3.005 | -8.188 | -8.290 | -10.244 | -2.295 | -2.080 | -4.742 | -9.358 | -1.232 | -11.174 | 4.031 | -0.231 | <i>-1.815</i> | -2.164 | -6.407 | 4.047 | -10.263 | -2.991 | -7.714 | -3.248 | -3.090 | -5.227 | -2.346 | -5.353 | 4.582 | l italicized. | | ASVAB Subtest | | d | 0.0058 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.4307 | 0.0030 | 0.0005 | 0.0133 | 0.0005 | 0.0005 | 0.0914 | 0.0011 | 0.0080 | 0.6593 | 0.2793 | 0.2620 | 0.0095 | 0.4807 | 0.0075 | 0.3681 | 0.0005 | 0.9109 | 0.8753 | 0.0005 | significant $(n > .05)$ are bold and italicized | | | AR | SE | 0.0532 | 0.0183 | 0.0179 | 0.0247 | 0.0528 | 0.0591 | 0.0353 | 0.0175 | 0.0880 | 0.0201 | 0.0439 | 0.1127 | 0.0416 | 0.0480 | 0.0388 | 0.0682 | 0.0353 | 0.0459 | 0.0467 | 0.0524 | 0.0565 | 0.0421 | 0.0579 | 0.0498 | 0.0541 | (n > .05) | | | | t | -2.762 | -6.378 | -4.507 | -3.550 | | | -2.966 | | | | | | | | | | | | | | | -5.897 | | | -5.711 | significant | | | | d | 0.8277 | 0.9379 | 0.0180 | 0.4311 | 0.3130 | 0.1415 | 0.2789 | 0.0525 | 0.2342 | 0.3454 | 0.2657 | 0.1640 | 0.0781 | 0.2115 | 0.0107 | 0.9303 | 0.0065 | 0.0062 | 0.6339 | 0.0746 | 0.1221 | 0.1397 | 0.1005 | 0.1726 | 45T -1.828 0.0604 0.0676 | statistically | | | GS | SE | 0.0534 | 0.0216 | 0.0207 | 0.0277 | 0.0519 | 0.0668 | 0.0409 | 0.0210 | 0.0914 | 0.0236 | 0.0470 | 0.1305 | 0.0461 | 0.0209 | 0.0440 | 0.0835 | 0.0397 | 0.0528 | 0.0523 | 0.0684 | 0.0723 | 0.0530 | 0.0720 | 0.0570 | 0.0604 | at are not | | | | t | -0.218 | -0.078 | -2.366 | 0.787 | -1.009 | 1.470 | 1.083 | -1.939 | -1.189 | 0.944 | -1.113 | -1.392 | -1.762 | 1.249 | -2.551 | -0.087 | -2.723 | -2.735 | 0.476 | -1.783 | -1.546 | 1.477 | -1.643 | 1.364 | -1.828 | Port sizes th | | | | JF | 29V | 31C | 31K | 31L | 31N | 31P | 310 | 31R | 318 | 31V | 35E | 35H | 35J | 35N | 36M | 41C | 44B | 44E | 45B | 45D | 45E | 45K | 45L | 45N | 45T | Note Eff | Note. Effect sizes that are not statistically significant (p > .05) are bold and italicized. Table 5 (cont'd) | | | d | 0.0005 | 0.0005 | 0.0259 | 0.4618 | 0.0005 | 0.0005 | 0.3161 | 0.0005 | 0.0005 | 0.0005 | 0.8630 | 0.2897 | 0.0005 | 0.0014 | 0.0209 | 0.0015 | 0.0005 | 0.1496 | 0.0005 | 0.7742 | 90000 | 0.0519 | 0.0481 | 0.0005 | 0.0754 | | |---------------|----|----|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|---------|---------|---------|--------|--------|--------|---------|---------|---------------|---| | | MK | SE | 0.0593 | 0.0301 | 0.0586 | 0.0819 | 0.0464 | 0.0757 | 0.0558 | 0.0158 | 0.0320 | 0.0268 | 0.0613 | 0.0584 | 0.0209 | 0.0323 | 0.0537 | 0.0449 | 0.0167 | 0.0346 | 0.0330 | 0.0461 | 0.0275 | 0.0390 | 0.0429 | 0.0243 | 0.0213 | | | | | t | 4.162 | -5.451 | -2.228 | -0.736 | -5.908 | 4.258 | -1.003 | -10.503 | -5.163 | 4.999 | -0.173 | -1.059 | -6.337 | -3.191 | -2.309 | -3.182 | -4.368 | -1.441 | 4.469 | -0.287 | -3.414 | -1.944 | -1.976 | -3.469 | <i>-1.778</i> | | | | | d | 0.6937 | 0.0005 | 0.0005 | 0.0209 | 0.0005 | 0.0005 | 0.0940 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0010 | 0.0005 | 0.0005 | 0.0034 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | | | AS | SE | 0.0484 | 0.0241 | 0.0466 | 0.0752 | 0.0397 | 0.0620 | 0.0489 | 0.0138 | 0.0265 | 0.0222 | 0.0594 | 0.0450 | 0.0181 | 0.0309 | 0.0467 | 0.0383 | 0.0138 | 0.0341 | 0.0300 | 0.0395 | 0.0223 | 0.0306 | 0.0410 | 0.0257 | 0.0224 | | | Subtest | | t | 0.394 | -9.406 | 4.002 | -2.311 | -5.383 | 4.796 | -1.674 | -16.162 | -9.035 | -5.454 | -3.781 | -3.283 | -19.059 | -7.863 | -2.929 | -5.894 | -30.234 | -13.261 | -14.304 | -8.238 | -7.376 | -9.376 | -10.485 | -17.087 | -17.842 | italicized. | | ASVAB Subtest | | d | 0.2879 | 0.0206 | 0.5002 | 0.3721 | 0.0884 | 0.3289 | 9000'0 | 0.0005 | 0.0005 | 0.0005 | 0.0400 | 0.4864 | 0.0005 | 0.0005 | 0.1974 | 0.3298 | 0.0005 | 0.0442 | 0.5364 | 0.0015 | 0.0005 | 0.0005 | 0.1069 | 0.0100 | 0.0005 | significant (p > .05) are bold and italicized | | | AR | SE | 0.0598 | 0.0285 | 0.0514 | 0.0712 | 0.0450 | 0.0731 | 0.0513 | 0.0151 | 0.0312 | 0.0237 | 0.0622 | 0.0466 | 0.0207 | 0.0326 | 0.0507 | 0.0415 | 0.0157 | 0.0324 | 0.0305 | 0.0455 | 0.0261 | 0.0365 | 0.0398 | 0.0226 | 0.0208 | (p > .05) | | | | 1 | -1.063 | -2.316 | -0.674 | -0.892 | -1.704 | 0.976 | -3.452 | -13.854 | -5.907 | -6.656 | -2.054 | 969.0 | -4.955 | 4.114 | -1.289 | -0.974 | -5.562 | -2.012 | -0.618 | -3.172 | 4.913 | -3.464 | -1.612 | -2.575 | -4.345 | significant | | | | d | 0.0182 | 0.5015 | 0.0040 | 0.0926 | 0.1345 | 0.6884 | 0.6834 | 0.0032 | 0.4723 | 0.0025 | 0.0484 | 0.2973 | 0.0842 | 0.0055 | 0.0313 | 0.0650 | 0.0033 | 0.4545 | 0.9325 | 0.5150 | 0.5032 | 0.3572 | 0.1029 | 0.4092 | 0.4969 | statistically | | | GS | SE | 0.0742 | 0.0330 | 0.0590 | 0.0860 | 0.0551 | 0.0922 | 0.0638 | 0.0180 | 0.0378 | 0.0293 | 0.0832 | 0.0543 | 0.0230 | 0.0374 | 0.0645 | 0.0457 | 0.0186 | 0.0376 | 0.036I | 0.0507 | 0.0300 | 0.0410 | 0.0465 | 0.0264 | 0.0241 | nat are not | | | | t | 0.670 | | | | | Note. Effect sizes that are not statistical | | | ' | JF | 46Z | 51B | 51K | 51M | 51R | 51T | 52C | 52D | 54B | 55B | 55D | 57E | 62B | 62E | 62F | 623 | 63B | 63D | 63E | 63G | HE9 | 631 | 93N | SE9 | 63T | Note. Eft | Table 5 (cont'd) | | | P | 0.0283 | 0.0753 | 0.0005 | 0.6693 | 0.0005 | 0.0005 | 0.0487 | 0.1037 | 0.0008 | 0.0005 | 0.0044 | 0.0012 | 0.0005 | 0.1244 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | | |---------|----|----|---------|---------|--------|--------|--------|--------|------------|--------|--------|--------|--------|----------------------------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|-------------------| | | MK | SE | 0.0227 | 0.0380 | 0.0336 | 0.0873 | 0.0313 | 0.0296 | 0.0318 | 0.0351 | 0.0568 | 0.0481 | 0.0466 | 0.0403 | 0.0376 | 0.0677 | 0.0585 | 0.0454 | 0.0363 | 0.0392 | 0.0183 | 0.0418 | 0.0331 | 0.0323 | 0.0289 | 0.0626 | 0.0412 | | | | | t | -2.193 | -1.779 | -5.459 | -0.427 | -5.593 | 4.710 | -1.972 | -1.627 | -3.365 | -3.972 | -2.849 | -3.246 | 4.201 | -1.537 | 4.118 | 4.297 | -7.152 | -3.707 | -10.649 | -3.499 | -6.558 | -6.045 | -7.240 | -5.252 | -3.488 | | | | 1 | р | 0.0005 | 0.0005 | 0.0005 | 0.0575 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.2909 | 0.0005 | 0.0011 | 0.1035 | 0.0057 | 0.0008 | 0.3200 | 0.2770 | 0.3829 | 0.0582 | 0.0005 | 0.1088 | 0.0045 | 0.0982 | 0.4155 | 0.4279 | 0.0312 | | | | AS | SE | 0.0181 | 0.0364 | 0.0317 | 0.0808 | 0.0299 | 0.0271 | 0.0314 | 0.0365 | 0.0529 | 0.0494 | 0.0453 | 0.0403 | 0.0334 | 0.0579 | 0.0200 | 0.0364 | 0.0273 | 0.0331 | 0.0165 | 0.0352 | 0.0281 | 0.0284 | 0.0259 | 0.0508 | 0.0315 | | | Subtest | | t | -19.518 | -12.236 | -9.844 | -I.899 | -7.925 | -7.864 | -5.262 | -6.569 | -1.056 | 4.060 | -3.265 | -I.628 | -2.764 | -3.340 | -0.995 | -I.087 | 0.873 | 1.894 | 3.737 | -1.604 | -2.837 | 1.654 | 0.814 | 0.793 | 2.154 | its inspec | | ASVAB S | | d | 0.0005 | 0.0005 | 0.0013 | 0.0047 | 0.0020 | 0.0005 | 0.0000 | 0.0007 | 0.3602 | 0.1747 | 0.0005 | 0.0005 | 0.0063 | 0.1602 | 0.0652 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0012 | 0.0377 | 0.0005 | 0.0005 | 0.0151 | 0.0005 | pro poly and | | | AR | SE | 0.0209 | 0.0362 | 0.0334 | 0.0763 | 0.0318 | 0.0275 | 0.0329 | 0.0366 | 0.0591 | 0.0491 | 0.0469 | 0.0416 | 0.0409 | 0.0688 | 0.0580 | 0.0475 | 0.0381 | 0.0366 | 0.0179 | 0.0419 | 0.0329 | 0.0316 | 0.0279 | 0.0601 | 0.0383 | (3) | | | | t | -5.704 | -3.645 | -3.221 | -2.830 | -3.089 | -6.223 | -3.307 | -3.400 | 0.915 | -1.357 | 4.286 | -6.762 | -2.729 | 1.404 | -1.844 | -7.210 | -6.100 | -5.760 | -13.548 | -3.233 | -2.078 | 4.581 | -7.951 | -2.430 | -5.198 | oi mifinont | | | | d | 0.4183 | 0.7241 | 0.4318 | 0.6207 | 0.6612 | 0.0431 | 0.7420 | 0.9355 | 0.9974 | 0.6630 | 0.1335 | 0.0588 | 0.2804 | 0.1080 | 0.7970 | 0.5580 | 0.1277 | 0.0626 | 0.0975 | 0.7969 | 0.5158 | 0.8637 | 0.0755 | 0.3542 | 0.8117 | ototiotion Il. | | | CS | SE | 0.0228 | 0.0428 | 0.0410 | 0.0958 | 0.0379 | 0.0362 | 0.0397 | 0.0450 | 0.0682 | 0.0572 | 0.0551 | 0.0499 | 0.0484 | 0.0752 | 0.0721 | 0.0508 | 0.0387 | 0.0421 | 0.0203 | 0.0498 | 0.0368 | 0.0362 | 0.0303 | 0.0688 | 0.0432 | 400 | | | | 1 | -0.809 | 0.353 | 0.786 | 0.495 | 0.438 | -2.023 | 0.329 | 0.081 | -0.003 | 0.436 | -1.500 | -1.890 | -1.079 | -1.607 | 0.257 | 0.586 | 1.523 | -1.862 | 1.657 | -0.257 | 0.650 | -0.172 | 1.777 | -0.927 | 0.238 | The management of | | | | JF | WE9 | 63Y | N/9 | 67R | T/9 | 671) | <u>077</u> | XL9 | 68B | 68D | 68F | -
-
-
-
-
- | 683 | W89 | N89 | Z89 | 71D | 71G | 71L | 71M | 72E | 72G | 73C | 73D |
74B | 22.77 | Note. Effect sizes that are not statistically significant (p > .05) are bold and italicized. | 1 | | |----|----|---|--|--|--|--|--|--
--
--
---|--|--|--|---|---|---
--
--
--
--
--
--|--|---

---|---
---|---|--|--| | | d | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0018 | 0.0005 | 0.0005 | 0.0005 | 0.1441 | 0.0005 | 0.0034 | 0.3185 | 0.0005 | 0.0005 | 0.0232 | 0.0020 | 0.0005 | 0.0007 | 0.3313 | 0.0374 | 0.4856 | 0.0005 | 0.3081 | 0.0005 | 0.0382 | | | MK | SE | 0.0201 | 0.0272 | 0.0254 | 0.0340 | 0.0573 | 0.0428 | 0.0239 | 0.0192 | 0.0553 | 0.0182 | 0.0496 | 0.0753 | 0.0417 | 0.0353 | 0.0195 | 0.0322 | 0.0190 | 0.0486 | 0.0387 | 0.0727 | 0.0773 | 0.0427 | 0.0613 | 0.0518 | 0.0544 | | | | t | -12.820 | -7.303 | -9.106 | -6.361 | -3.124 | -5.943 | -9.249 | 4.833 | -1.461 | -7.598 | -2.925 | -0.997 | -7.020 | -6.335 | -2.270 | -3.095 | -5.050 | -3.403 | -0.971 | -2.081 | -0.697 | -5.305 | -1.019 | 4.887 | -2.072 | | | | р | 0.4482 | 0.4784 | 0.8571 | 0.3638 | 0.0245 | 0.4923 | 0.0012 | 0.0005 | 0.9814 |
0.0005 | 0.0160 | 0.0260 | 0.0005 | 0.0005 | 0.0005 | 0.8010 | 0.0005 | 0.3582 | 0.0005 | 0.0547 | 0.9438 | 0.0160 | 0.6252 | 0.3232 | 0.8577 | | | AS | SE | 0.0164 | 0.0225 | 0.0224 | 0.0283 | 0.0425 | 0.0341 | 0.0211 | 0.0158 | 0.0495 | 0.0145 | 0.0397 | 0.0696 | 0.0336 | 0.0291 | 0.0158 | 0.0264 | 0.0160 | 0.0403 | 0.0332 | 0.0537 | 0.0614 | 0.0319 | 0.0521 | 0.0418 | 0.0402 | | | | t | -0.758 | 0.709 | 0.180 | 0.908 | -2.249 | -0.687 | 3.231 | 4.196 | 0.023 | -13.304 | -2.408 | -2.227 | -4.840 | -6.668 | -14.504 | -0.252 | -6.937 | 0.919 | 3.544 | -1.921 | -0.070 | 2.409 | 0.488 | -0.988 | -0.179 | -= | | | р | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0133 | 0.0063 | 0.0005 | 0.2479 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.1009 | 0.0077 | 0.0222 | 0.0054 | 0.0005 | 0.0005 | are hold and | | AR | SE | 0.0201 | 0.0245 | 0.0259 | 0.0326 | 0.0552 | 0.0400 | 0.0235 | 0.0185 | 0.0487 | 0.0180 | 0.0432 | 0.0695 | 0.0411 | 0.0338 | 0.0180 | 0.0309 | 0.0180 | 0.0437 | 0.0354 | 0.0589 | 0.0766 | 0.0387 | 0.0511 | 0.0504 | 0.0552 | n > 05 | | | t | -12.848 | -9.993 | -9.131 | -8.970 | -5.027 | -5.221 | -9.585 | -8.431 | -5.358 | -8.451 | -2.474 | -2.730 | -3.973 | -1.156 | -6.624 | 4.548 | -5.676 | -3.880 | -6.000 | -1.641 | -2.667 | -2.286 | -2.785 | 4.336 | -3.675 | v cionificant (| | | р | 0.0116 | 0.7518 | 0.2097 | 0.0354 | 0.9695 | 0.2913 | 0.4041 | 0.4169 | 0.3015 | 0.0044 | 0.6380 | 0.8992 | 0.0565 | 0.8544 | 0.3389 | 0.1349 | 0.0513 | 0.0005 | 0.5333 | 0.0702 | 0.0198 | 0.1439 | 0.6396 | 0.1428 | 0.0126 | atisticall | | GS | SE | 0.0211 | 0.0270 | 0.0275 | 0.0359 | 0.0608 | 0.0420 | 0.0259 | 0.0203 | 0.0571 | 0.0198 | 0.0536 | 0.0845 | 0.0464 | 0.0386 | 0.0207 | 0.0358 | 0.0226 | 0.0561 | 0.0459 | 0.0829 | 0.0891 | 0.0457 | 0.0658 | 0.0618 | 0.0624 | nat are no | | | t | 2.523 | -0.316 | 1.254 | 2.104 | -0.038 | 1.055 | 0.834 | -0.812 | 1.033 | -2.848 | 0.471 | 0.127 | -1.907 | 0.183 | -0.956 | 1.495 | -1.949 | 4.535 | -0.623 | 1.810 | -2.331 | 1.461 | -0.468 | -1.465 | -2.496 | Port cizec th | | ! | JF | 75B | 75C | 75D | 75E | 75F | 763 | 76P | 76V | 76X | 77F | 77W | 81L | 82C | H88 | 88M | 88N | 91A | 91D | 91E | 91F | 91G | 91K | 91M | 91P | 91Q | Noto Eff | | | AS | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | t SE p t t SE p t t SE p t t SE t t SE t t SE t </td <td>t$SE$$p$$t$$t$$SE$$p$$t$$t$$SE$$t$$t$$SE$$t$</td> <td>t SE p t p</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>t SE p t AS MK 1 SE p t SE</td> <td>t SE p t SE</td> <td>t SE p t SE</td> <td>t SE h h<!--</td--><td>t SE h h<!--</td--><td>t SE h h<!--</td--><td>t SE t t SE t t t SE t t t SE t t</td><td>t SE p t SE</td><td>t SE h h<!--</td--><td>I SE I SE I SE I SE I SE I SE I I SE I <th< td=""><td>t SE p t SE</td><td>I I I<td>(1) (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<></td></td></th<></td></td></td></td></td> | t SE p t t SE p t t SE t t SE t | t SE p | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | t SE p t AS MK 1 SE p t | t SE p t | t SE p t | t SE h </td <td>t SE h h<!--</td--><td>t SE h h<!--</td--><td>t SE t t SE t t t SE t t t SE t t</td><td>t SE p t SE</td><td>t SE h h<!--</td--><td>I SE I SE I SE I SE I SE I SE I I SE I <th< td=""><td>t SE p t SE</td><td>I I I<td>(1) (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<></td></td></th<></td></td></td></td> | t SE h </td <td>t SE h h<!--</td--><td>t SE t t SE t t t SE t t t SE t t</td><td>t SE p t SE</td><td>t SE h h<!--</td--><td>I SE I SE I SE I SE I SE I SE I I SE I <th< td=""><td>t SE p t SE</td><td>I I I<td>(1) (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<></td></td></th<></td></td></td> | t SE h </td <td>t SE t t SE t t t SE t t t SE t t</td> <td>t SE p t SE</td> <td>t SE h h<!--</td--><td>I SE I SE I SE I SE I SE I SE I I SE I <th< td=""><td>t SE p t SE</td><td>I I I<td>(1) (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<></td></td></th<></td></td> | t SE t t SE t t t SE t t t SE t | t SE p t | t SE h </td <td>I SE I SE I SE I SE I SE I SE I I SE I <th< td=""><td>t SE p t SE</td><td>I I I<td>(1) (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<></td></td></th<></td> | I SE I SE I SE I SE I SE I SE I I SE I <th< td=""><td>t SE p t SE</td><td>I I I<td>(1) (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<></td></td></th<> | t SE p t | I I <td>(1) (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<></td> | (1) <t< td=""><td>GS AR AS I K K I K I I</td><td>AR AS h t SE p t</td></t<> | GS AR AS I K K I K I | AR AS h t SE p t | Table 5 (cont'd) | | d | 1235 | . 200 | 053 | 7251 | 2005 | 011 | 835 | 3005 | 0005 |)124 | 2005 | 2005 | 1687 | 2005 | 2005 | 0600 | 6200 | 0154 | 0544 | . 5000 | 0.0005 | | 0005 |).0005
).0028 | |----|-----|--------|-------------|-------------|--------|---------|---------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|---------|-------|------------------| | | , | - | | _ | _ | - | _ | | | | | | | | | | | | | | | | | , | , <u> </u> | | MK | SE | 0.0413 | | | +-3 | -2.266 | -1.344 | -2.787 | -0.352 | -10.676 | -3.269 | 1.073 | -5.167 | -7.485 | -2.500 | -5.694 | -7.249 | -1.060 | -6.413 | 4.772 | -2.612 | -2.656 | -2.422 | -1.924 | 4.176 | -3.800 | 4.126 | | -2.991 | | ; | d | 0.7300 | 0.8003 | 0.3773 | 0.3640 | 0.0341 | 0.0005 | 0.1655 | 0.0005 | 0.1372 | 0.6214 | 0.9634 | 0.0005 | 0.2772 | 0.0064 | 0.0005 | 0.0005 | 0.7325 | 0.1846 | 0.5164 | 0.0234 | 0.000 | 0.1464 | | 0.0200 | | AS | SE | 0.0460 | 0.0498 | 0.0572 | 0.0468 | 0.0150 | 0.0153 | 0.0696 | 0.0383 | 0.0161 | 0.0493 | 0.0255 | 0.0161 | 0.0573 | 0.0326 | 0.0531 | 0.0387 | 0.0537 | 0.0446 | 0.0367 | 0.0366 | 0.0521 | 0.0500 | | 0.0368 | | | t | 0.345 | -0.253 | -0.883 | 0.908 | -2.119 | -10.838 | -I.387 | -3.791 | -1.486 | -0.494 | 0.046 | -5.419 | -1.087 | -2.725 | -3.738 | -7.596 | 0.342 | -1.327 | -0.649 | -2.267 | -3.334 | -1.452 | | -2.326 | | | d | 0.0005 | 0.0139 | 0.0232 | 0.0029 | 0.0005 | 0.0005 | 0.0005 | 0.4807 | 0.0005 | 0.2881 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0069 | 0.0055 | 0.9569 | 0.0005 | 0.0017 | 0.0005 | 0.0076 | 0.0005 | | 0.0005 | | AR | SE | 0.0504 | 0.0587 | 0.0744 | 0.0486 | 0.0186 | 0.0169 | 0.0728 | 0.0425 | 0.0192 | 0.0604 | 0.0279 | 0.0184 | 0.0651 | 0.0407 | 0.0626 | 0.0421 | 0.0689 | 0.0747 | 0.0558 | 0.0453 | 0.0617 | 0.0579 | | 0.0428 | | | 1 | -5 505 | -2.461 | -2.269 | -2.978 | -13.158 | -10.087 | 4.041 | -0.705 | -9.231 | -1.062 | 9.310 | -6.209 | -3.456 | 4.896 | -2.703 | -2.776 | -0.054 | -3.621 | -3.136 | -5.804 | -2.669 | -3.670 | | -3.682 | | | a | 0.0352 | 0 5202 | 0.9065 | 0.6802 | 0.0703 | 0.0014 | 0.0194 | 0.8527 | 0.2707 | 0.7303 | 0.5033 | 0.5983 | 0.8448 | 0.7338 | 0.7245 | 0.6620 | 0.1174 | 0.4956 | 0.9406 | 0.3603 | 0.8387 | 0.0456 | | 0.6691 | | GS | SE | 0.0618 | 90200 | 0.0888 | 0.0637 | 0.0206 | 0.0197 | 0.0874 | 0.0511 | 0.0206 | 98900 | 0.0365 | 0.0224 | 0.0802 | 0.0512 | 0.0730 | 0.0490 | 0.0883 | 0.0719 | 0.0604 | 0.0517 | 0.0734 | 0.0710 | | 0.0476 | | | 1 | 2 106 | -0.204 | | | | | | IF. | 01D | 71 N | 91.5
01T | 917 | 97.A | 926 | M26 | 92R | 7.70
V.Cp | 030 | 93P | 95R | 95C | 96B | 09D | 96R | 97B | 2%6
2%6 | 98G | H86 | 286 | 55C+93F | () () | 27Z+29Z | Table 5 (cont'd) | | | N | 2000 | 2000 | 2000 | 4593 | 2000 | 1950 | 603 | 2000 | 720 | 1919 | 4101 | 9// | 2724 | 592 | 683 | 703 | 1104 | 1996 | 2406 | 2000 | 4764 | 2000 | 752 | 358 | 868 | |---------------|----|----|--------| | | | Ъ | 0.1773 | 0.0213 | 0.0171 | 0.4122 | 0.1028 | 0.9432 | 0.0762 | 0.0311 | 0.4006 | 0.0005 | 0.0005 | 0.0524 | 0.0005 | 0.3618
 0.1917 | 0.7366 | 0.2668 | 0.1246 | 0.0005 | 0.0005 | 0.0005 | 0.0071 | 0.1125 | 0.0108 | 0.0044 | | | VE | SE | 0.0216 | 0.0214 | 0.0217 | 0.0219 | 0.0207 | 0.0313 | 0.0574 | 0.0206 | 0.0522 | 0.0321 | 0.0222 | 0.0556 | 0.0259 | 0.0579 | 0.0556 | 0.0511 | 0.0459 | 0.0295 | 0.0320 | 0.0213 | 0.0216 | 0.0208 | 0.0562 | 0.0755 | 0.0439 | | | | t | -1.349 | -2.303 | -2.385 | -0.820 | -1.631 | -0.071 | -1.773 | -2.156 | -0.841 | -3.844 | 4.792 | -1.940 | -4.352 | -0.912 | -1.306 | -0.336 | -1.111 | 1.536 | -3.727 | 4.267 | -3.578 | -2.693 | -1.587 | -2.548 | -2.845 | | est | | р | 0.0282 | 0.0044 | 0.0339 | 0.0093 | 0.0152 | 0.5953 | 0.9322 | 0.0654 | 0.0892 | 0.0069 | 0.000 | 0.5907 | 0.2943 | 0.5631 | 0.1427 | 0.6385 | 0.0605 | 9000.0 | 0.8029 | 0.0005 | 0.0005 | 0.0005 | 0.0096 | 0.0387 | 0.1767 | | ASVAB Subtest | EI | SE | 0.0195 | 0.0189 | 0.0191 | 0.0198 | 0.0190 | 0.0307 | 0.0206 | 0.0191 | 0.0430 | 0.0293 | 0.0195 | 0.0491 | 0.0258 | 0.0497 | 0.0467 | 0.0484 | 0.0350 | 0.0292 | 0.0277 | 0.0189 | 0.0191 | 0.0185 | 0.0529 | 0.0652 | 0.0459 | | ASI | | 1 | 1 | | -2.121 | | _ | -1.351 | | | | d | 0.0005 | 0.0005 | 0.0011 | 0.0005 | 0.0005 | 0.0005 | 0.2477 | 0.0005 | 0.0005 | 0.1718 | 0.2420 | 0.3538 | 0.0065 | 0.1669 | 0.3566 | 0.1417 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0572 | 0.1988 | 0.0005 | | | MC | SE | 0.0188 | 0.0184 | 0.0187 | 0.0196 | 0.0181 | 0.0283 | 0.0501 | 0.0180 | 0.0424 | 0.0292 | 0.0207 | 0.0491 | 0.0247 | 0.0469 | 0.0482 | 0.0483 | 0.0403 | 0.0286 | 0.0251 | 0.0179 | 0.0182 | 0.0177 | 0.0488 | 0.0612 | 0.0410 | | | | 1 | -3.761 | | | | ļ | 27E | Table 5 (cont'd) | | | × | 852 | 2000 | 2000 | 2778 | 709 | 563 | 1394 | 2000 | 498 | 4278 | 1021 | 307 | 1034 | 737 | 1201 | 323 | 1045 | 592 | 612 | 565 | 546 | 817 | 448 | 563 | 209 | | |---------------|----|----|--------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|-----------|-------------------------| | | | d | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.1515 | 0.0877 | 0.1507 | 0.0005 | 0.0050 | 0.0005 | 0.0455 | 0.2217 | 0.0005 | 0.0005 | 0.9383 | 0.0286 | 0.0005 | 0.988I | 0.0005 | 0.6575 | 0.6145 | 0.0029 | 0.5439 | 0.0005 | 0.0104 | | | | VE | SE | 0.0477 | 0.0211 | 0.0188 | 0.0254 | 0.0400 | 0.0546 | 0.0347 | 0.0185 | 0.0729 | 0.0208 | 0.0435 | 0.0911 | 0.0412 | 0.0466 | 0.0338 | 0.0598 | 0.0391 | 0.0441 | 0.0487 | 0.0543 | 0.0715 | 0.0474 | 0.0632 | 0.0496 | 0.0562 | | | | | t | -7.139 | -6.571 | 4.343 | -3.563 | -1.434 | <i>-1.708</i> | -1.437 | -5.538 | -2.806 | -5.000 | -2.000 | -1.222 | -5.444 | -6.525 | 0.077 | -2.188 | -3.984 | 0.015 | -3.884 | 0.443 | 0.504 | -2.977 | -0.607 | -3.489 | -2.564 | to living | | test | | þ | 0.5528 | 0.0005 | 0.0005 | 0.0005 | 0.0012 | 0.0059 | 0.0005 | 0.0005 | 0.2459 | 0.0005 | 0.3458 | 0.4512 | 0.0005 | 0.0655 | 0.0140 | 0.2544 | 0.2630 | 0.0005 | 0.9120 | 0.1160 | 0.0457 | 0.1266 | 0.5325 | 0.0005 | 0.6323 | are hold and italicized | | ASVAB Subtest | EI | SE | 0.0450 | 0.0174 | 0.0177 | 0.0248 | 0.0438 | 0.0584 | 0.0333 | 0.0175 | 9.0676 | 0.0189 | 0.0417 | 0.0949 | 0.0386 | 0.0457 | 0.0376 | 0.0669 | 0.0370 | 0.0468 | 0.0491 | 0.0544 | 0.0577 | 0.0467 | 0.0667 | 0.0532 | | (3) | | AS | | t | 0.594 | -7.692 | -6.005 | -3.591 | -3.244 | -2.756 | -5.029 | -7.167 | -1.160 | -6.231 | -0.943 | -0.753 | -3.833 | -1.842 | -2.459 | -1.140 | -1.119 | -3.837 | -0.111 | -1.572 | -1.998 | <i>-1.528</i> | 0.624 | -3.459 | -0.478 | Significant | | | | d | 0.0025 | 0.0005 | 0.0005 | 0.0005 | 0.1561 | 0.9254 | 0.0005 | 0.0005 | 0.6674 | 0.0059 | 0.1711 | 0.3513 | 0.8852 | 0.0788 | 0.0037 | 0.2872 | 0.0769 | 0.0005 | 0.0014 | 0.0765 | 0.2075 | 0.1868 | 0.0005 | 0.3029 | 0.6084 | ototiotion llv | | | MC | SE | 0.0411 | 0.0181 | 0.0161 | 0.0224 | 0.0438 | 0.0508 | 0.0313 | 0.0163 | 0.0290 | 0.0189 | 0.0384 | 0.0753 | 0.0365 | 0.0433 | 0.0332 | 0.0675 | 0.0336 | 0.0446 | 0.0469 | 0.0552 | 0.0589 | 0.0410 | 0.0551 | 0.0478 | 0.0488 | ,000 000 | | | | t | -3.018 | -3.577 | -6.634 | 4.463 | -1.418 | -0.094 | -3.930 | -5.343 | -0.430 | -2.754 | 1.369 | 0.932 | -0.144 | -1.758 | -2.901 | -1.064 | -1.769 | -3.851 | -3.188 | -1.771 | -1.260 | -1.320 | 4.759 | -1.030 | 0.512 | 17 | | | | JF | 29V | 310 | 31K | 311. | 7 Z | 31P | 310 | 31R | 318 | 310 | 35E | 35H | 35.1 | 35N | 36M | 41C | 44B | 44E | 45B | 45D | 45E | 45K | 45L | 45N | 45T 0.512 | 110 | Table 5 (cont'd) | | | N | 498 | 2037 | 532 | 327 | 723 | 344 | 529 | 2000 | 1380 | 2457 | 415 | 791 | 3054 | 1522 | 527 | 887 | 2000 | 1234 | 1376 | 785 | 2396 | 1302 | 750 | 2506 | 3378 | | |--------------|----|------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|---------------|--------|----------|----------------| | | | þ | 0.0322 | 0.6112 | 0.1932 | 0.2943 | 0.4422 | 0.1600 | 0.1592 | 0.8301 | 0.0764 | 0.0005 | 0.0010 | 0.2351 | 0.238I | 0.8446 | 0.7154 | 0.7340 | 0.1544 | 0.0006 | 0.2296 | 0.6109 | 0.0005 | 0.1270 | 0.9387 | 0.0005 | 0.0412 | | | | VE | SE | 0.0959 | 0.0310 | 0.0569 | 0.0813 | 0.0492 | 0.0842 | 0.0548 | 0.0160 | 0.0349 | 0.0270 | 0.0725 | 0.0456 | 0.0225 | 0.0375 | 0.0587 | 0.0452 | 0.0177 | 0.0361 | 0.0366 | 0.0506 | 0.0293 | 0.0377 | 0.044I | 0.0255 | 0.0228 | | | | | t | -2.142 | -0.508 | 1.301 | -1.049 | -0.768 | -1.405 | -1.408 | 0.215 | -1.772 | 4.650 | -3.301 | 1.187 | -1.180 | -0.196 | 0.365 | -0.340 | 1.424 | -3.423 | -1.201 | -0.509 | -5.005 | -1.526 | 0.077 | 4.055 | -2.042 | italioizad | | est | | þ | 0.4414 | 0.0170 | 0.0022 | 0.0126 | 0.0005 | 0.0218 | 0.0005 | 0.0005 | 0.0005 | 0.0011 | 0.2989 | 0.2850 | 0.0005 | 0.0658 | 0.0005 | 0.0508 | 0.0005 | 0.0088 | 0.0005 | 0.0064 | 0.2252 | 0.5964 | 0.1369 | 0.0005 | 0.0005 | bold on | | SVAB Subtest | EI | SE | (30 / 4) | | AS | | t | -0.770 | -2.388 | -3.059 | -2.494 | -3.837 | -2.294 | -5.324 | -13.013 | -3.915 | -3.267 | I.039 | -1.069 | -6.412 | -1.840 | -3.635 | -1.953 | -8.548 | -2.621 | -6.406 | -2.729 | -1.213 | -0.530 | <i>-1.488</i> | 4.134 | -5.619 | Significant. | | | | p | 0.7310 | 0.0005 | 0.0034 | 0.5281 | 0.1496 | 0.0526 | 0.1916 | 0.0005 | 0.0005 | 0.6445 | 0.1122 | 0.0055 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0069 | 0.3865 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0008 | . Ilacitotiato | | | MC | SE | 0.0524 | 0.0258 | 0.0521 | 0.0656 | 0.0424 | 0.0708 | 0.0483 | 0.0143 | 0.0306 | 0.0222 | 0.0617 | 0.0485 | 0.0197 | 0.0304 | 0.0460 | 0.0397 | 0.0151 | 0.0346 | 0.0308 | 0.0475 | 0.0245 | 0.0347 | 0.0406 | 0.0243 | 0.0226 | 70 0=0 +0 | | | | 1 | -0.344 | -5.305 | -2.925 | -0.631 | -1.441 | 1.938 | -1.306 | -8.095 | -5.093 | -0.461 | -1.588 | -2.777 | -6.417 | -4.098 | 4.404 | -3.924 | -10.031 | 4.154 | -2.703 | -0.866 | -3.913 | -3.613 | 4.274 | 4.210 | -3.341 0 | Cant aimed 41 | | | | JF _ | 46Z | 51B | 51K | 51M | 51R | 51T | 52C | 52D | 54B | 55B | 55D | 57E | 62B | 62E | 62F | 621 | 63B | 63D | 63E | 63G | HE9 | 631 | 93N | SE9 | 63T | AIL A. T.C. | Table 5 (cont'd) | | | - j | | AS | ASVAB Subtest | test | | Ë | | | |---------------|--------|-----------|-----------|-----------|---------------|--------------|--------------|--------|--------|------| | MC | MC | | | | E | | | VE. | | , | | t SE | SE | | þ | t | SE | d | 1 | SE | р | N | | -9.242 0.0195 | 0.0195 | | 0.0005 | -5.906 | 0.0208 | 0.0005 | -2.514 | 0.0222 | 0.0119 | 3062 | | -3.452 0.0406 | 0.0406 | | 90000 | -2.588 | 0.0380 | 0.0097 | -1.956 | 0.0386 | 0.0505 | 284 | | -2.595 0.0358 | 0.0358 | | 0.0095 | -0.941 | 0.0348 | 0.3465 | -4.573 | 0.0389 | 0.0005 | 1359 | | -3.444 0.0807 | 0.0807 | _ | 90000 | 0.155 | 0.0782 | 0.8771 | -1.616 | 0.0863 | 0.1062 | 236 | | -3.432 0.032 | 0.032 | | 90000 | -2.792 | 0.0326 | 0.0052 | -3.834 | 0.0354 | 0.0005 | 1564 | | -3.412 0.0314 | 0.031 | ₩ | 0.000 | -2.633 | 0.0311 | 0.0085 | -2.803 | 0.0334 | 0.0051 | 1632 | | 4.686 0.0340 | 0.034 | | 0.0005 | -2.635 | 0.0336 | 0.0084 | -1.762 | 0.0377 | 0.0781 | 1751 | | -3.933 0.0380 | 0.038 | | 0.0005 | -3.973 | 0.0402 | 0.0005 | -1.924 | 0.0429 | 0.0544 | 1168 | | -0.228 0.061 | 0.067 | * | 0.8193 | 1.956 | 0.0640 | 0.0505 | -3.564 | 0.0626 | 0.0005 | 640 | | -0.826 0.0532 | 0.053 | . ^ | 0.4087 | 1.290 | 0.0570 | 0.1972 | 4.497 | 0.0518 | 0.0005 | 740 | | -1.583 0.049 | 0.049 | - | 0.1135 | -2.218 | 0.0500 | 0.0266 | -1.806 | 0.0458 | 0.0708 | 712 | | -2.195 0.043 | 0.043 | | 0.0282 | -2.587 | 0.0444 | 0.0097 | -0.772 | 0.0477 | 0.4403 | 904 | | 0.438 0.038 | 0.038 | _ | 0.6613 | -2.638 | 0.0388 | 0.0083 | -3.027 | 0.0414 | 0.0025 | 1128 | | -2.195 0.065 | 0.065 | 4 | 0.0282 | -1.718 | 0.0656 | 0.0858 | -0.995 | 0.0648 | 0.3197 | 388 | | -0.460 0.050 | 0.050 | <u>,</u> | 0.6457 | -1.715 | 0.0583 | 0.0864 | -3.864 | 0.0591 | 0.0005 | 475 | | -1.223 0.042 | 0.042 | S | 0.2213 | -0.657 | 0.0431 | 0.5111 | -3.831 | 0.0418 | 0.0005 | 749 | | -0.759 0.029 | 0.029 | 0 | 0.4478 | -1.772 | 0.0304 | 0.0764 | -6.404 | 0.0426 | 0.0005 | 1431 | | 3.966 0.032 | 0.032 | <u></u> ∞ | 0.0005 | -2.469 | 0.0358 | 0.0136 | -6.110 | 0.0392 | 0.0005 | 1145 | | -0.746 0.016 | 0.010 | 4 | 0.4559 | 1.801 | 0.0176 | 0.0717 | -11.805 | 0.0198 | 0.0005 | 2000 | | -1.083 0.035 | 0.035 | 0 | 0.2787 | 1.444 | 0.0420 | 0.1487 | -6.683 | 0.0477 | 0.0005 | 972 | | -3.895 0.029 | 0.029 | ي ، | 0.0005 | -2.613 | 0.0324 | 0.0000 | -1.561 | 0.0344 | 0.1185 | 1651 | | -1.764 0.028 | 0.029 | 2 | 0.0778 | -2.838 | 0.0310 | 0.0045 | -2.340 | 0.0365 | 0.0193 | 1738 | | 0.230 0.024 | 0.024 | 1,1 | 0.8184 | 1.210 | 0.0277 | 0.2264 | -6.937 | 0.0276 | 0.0005 | 2246 | | 1.567 0.04 | 0.04 | 98 | 0.1171 | -0.627 | 0.0562 | 0.5305 | -2.484 |
0.0741 | 0.0130 | 200 | | 0.589 0.03 | 0.03 | 9 | 0.5560 | -2.711 | 0.0358 | 0.0067 | -8.044 | 0.0415 | 0.0005 | 1184 | | | | 1 | -1111111- | in it our | (30 / -) | are bold one | 1 italinized | | | | Note. Effect sizes that are not statistically significant (p > .05) are bold and italicized. | | | N | 4113 | 2505 | 2714 | 1379 | 624 | 266 | 2897 | 2000 | 541 | 2000 | 805 | 331 | 808 | 1525 | 2000 | 1954 | 2000 | 748 | 1209 | 474 | 309 | 1478 | 513 | 695 | 682 | |---------------|----|----------------|------------| | | | р | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 9000.0 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0180 | 0.4501 | 0.5312 | 0.6134 | 0.1074 | 0.0012 | 0.0005 | 0.0005 | 0.2045 | 0.0005 | 0.2951 | 0.1887 | 0.5960 | 0.0005 | 0.4031 | 0.1127 | | | VE | SE | 0.0195 | 0.0254 | 0.0255 | 0.0356 | 0.0609 | 0.0378 | 0.0237 | 0.0187 | 0.0577 | 0.0185 | 0.0428 | 0.0749 | 0.0452 | 0.0369 | 0.0195 | 0.0291 | 0.0212 | 0.0498 | 0.0434 | 0.0735 | 0.0923 | 0.0389 | 0.0660 | 0.0628 | 0.0522 | | | | t | -8.575 | -6.717 | 4.429 | -6.911 | -3.418 | -5.536 | 4.419 | -5.299 | -3.801 | -2.366 | -0.755 | 0.626 | -0.505 | -1.610 | -3.251 | -5.459 | -4.288 | -1.269 | -3.951 | -1.047 | -1.315 | -0.530 | -4.236 | -0.836 | -1.586 | | test | | d | 0.1370 | 0.2264 | 0.0040 | 0.0039 | 0.0023 | 0.9073 | 0.0005 | 0.0005 | 0.1020 | 0.0005 | 0.1907 | 0.6570 | 0.0605 | 0.1314 | 0.0005 | 0.8709 | 0.0084 | 0.4949 | 0.2378 | 0.7983 | 0.3247 | 0.0005 | 0.0295 | 0.9658 | 0.3946 | | ASVAB Subtest | EI | SE | 0.0186 | 0.0259 | 0.0250 | 0.0325 | 0.0477 | 0.0384 | 0.0239 | 0.0182 | 0.0209 | 0.0174 | 0.0456 | 0.0834 | 0.0414 | 0.0348 | 0.0185 | 0.0313 | 0.0188 | 0.0484 | 0.0367 | 0.0740 | 0.0640 | 0.0375 | 0.0556 | 0.0506 | 0.0470 | | AS | | t | -1.487 | -1.210 | -2.878 | -2.884 | 3.045 | -0.116 | -4.117 | 4.822 | -1.635 | 4.808 | -1.309 | -0.444 | -I.877 | -1.508 | 4.047 | -0.163 | -2.637 | -0.683 | -1.180 | 0.256 | -0.985 | -3.708 | -2.177 | 0.043 | -0.851 | | | | d | 0.3911 | 0.1282 | 0.6229 | 0.0117 | 0.1024 | 0.1317 | 0.9230 | 0.0005 | 0.0028 | 0.0005 | 0.0005 | 0.7726 | 0.1376 | 0.6998 | 0.0005 | 0.0850 | 0.0005 | 0.4875 | 0.4228 | 0.8059 | 0.0111 | 0.4656 | 0.3151 | 0.6274 | 0.0015 | | | MC | SE | 0.0170 | 0.0447 | | | | 1 | -0.858 | 1.521 | 0.492 | 2.521 | 1.633 | 1.508 | -0.097 | -6.578 | -2.989 | -6.199 | -4.175 | 0.289 | -1.485 | 0.386 | -6.270 | 1.722 | -6.265 | -0.694 | -0.802 | 0.246 | -2.541 | 0.730 | 1.005 | -0.485 | -3.173 | | | | \overline{F} | 75B | 75C | 75D | 75E | 75F | 763 | 76P | N9L | X9L | 77F | W// | 81L | 82C | H88 | 88M | 88N | 91A | 91D | 91E | 91F | 916 | 91K | 91M | 91P | 910 -3.173 | Note. Effect sizes that are not statistically significant (p > .05) are bold and italicized. Table 5 (cont'd) | | | | | AS | ASVAB Subtest | test | | | | | |-------------------|-------------|--------|--|-------------|---------------|----------------|--------|--------|--------|------| | | | MC | | | EI | | | VE | | | | JF | t | SE | d | t | SE | d | t | SE | р | N | | 91R | -1.926 | 0.0466 | 0.0540 | -2.257 | 0.0501 | 0.0240 | -0.893 | 0.0577 | 0.3718 | 558 | | 91S | -3.409 | | 0.0007 | -3.031 | 0.0532 | 0.0024 | -0.104 | 0.0581 | 0.9173 | 514 | | 91T | 1.573 | | 0.1157 | -0.288 | 0.0725 | 0.7735 | -2.727 | 0.0748 | 0.0064 | 345 | | 91Z | -2.522 | | 0.0117 | -0.626 | 0.0528 | 0.5312 | -3.645 | 0.0581 | 0.0005 | 641 | | 92A | -5.155 | | 0.0005 | 0.329 | 0.0175 | 0.7424 | -6.250 | 0.0194 | 0.0005 | 2000 | | 92G | -5.573 | | 0.0005 | 4.724 | 0.0174 | 0.0005 | -6.880 | 0.0189 | 0.0005 | 2000 | | 92M | -1.108 | | 0.2680 | 0.080 | 0.0842 | 0.9361 | -0.499 | 0.0764 | 0.6175 | 298 | | 92R | -2.575 | 0.0408 | 0.0100 | -1.119 | 0.0429 | 0.2633 | 1.109 | 0.0463 | 0.2676 | 1009 | | 92Y | 0.658 | | 0.5106 | -2.801 | 0.0182 | 0.0051 | -6.888 | 0.0186 | 0.0005 | 2000 | | 93C | 0.569 | | 0.5695 | -3.176 | 0.0555 | 0.0015 | 4.373 | 0.0648 | 0.0005 | 929 | | 93P | -3.856 | | 0.0005 | -2.634 | 0.0296 | 0.0084 | -8.996 | 0.0324 | 0.0005 | 1327 | | 95B | -5.873 | 0.0182 | 0.0005 | -2.708 | 0.0181 | 0.0068 | -6.927 | 0.0224 | 0.0005 | 2000 | | 95C | -0.879 | | 0.3794 | -0.288 | 0.0731 | 0.7736 | -0.741 | 0.0649 | 0.4588 | 323 | | 96B | -2.519 | | 0.0118 | 0.072 | 0.0411 | 0.9423 | -6.065 | 0.0559 | 0.0005 | 818 | | О96 | -I.803 | | 0.0714 | 0.211 | 0.0600 | 0.8326 | -2.732 | 0.0761 | 0.0063 | 361 | | 96R | -2.089 | | 0.0367 | -0.920 | 0.0424 | 0.3576 | 4.064 | 0.0447 | 0.0005 | 792 | | 97B | -1.471 | | 0.1413 | -2.155 | 0.0618 | 0.0312 | -2.879 | 0.0924 | 0.0040 | 429 | | 38C | -1.660 | 0.0532 | 0.0969 | -1.003 | 0.0525 | 0.3156 | -3.651 | 0.0783 | 0.0005 | 562 | | 98G | -1.098 | | 0.2724 | -1.415 | 0.0415 | 0.1572 | -1.261 | 0.0664 | 0.2074 | 1242 | | H86 | -0.810 | | 0.4178 | 0.880 | 0.0451 | 0.3786 | -2.424 | 0.0508 | 0.0153 | 996 | | Z86 | -1.297 | | 0.1946 | 0.735 | 0.0597 | 0.4622 | -2.987 | 0.0752 | 0.0028 | 463 | | 55G+93F | -0.629 | | 0.5296 | 0.229 | 0.0604 | 0.8189 | 0.739 | 0.0551 | 0.4602 | 518 | | 27Z+29Z | -2.623 | | 0.0087 | -1.955 | 0.0410 | 0.0505 | -3.575 | 0.0418 | 0.0005 | 981 | | 25M+25Z+97 | | | | | | | | | 0.1558 | | | A | -2.054 | 0.0583 | 0.0400 | -0.163 | 0.0558 | 0.8706 | -1.419 | 0.0942 | | 1195 | | 15E+16J -1.514 | -1.514 | 0.0773 | 0.1299 | -1.440 | 0.0802 | 0.1499 | 1.042 | 0.0787 | 0.2973 | 395 | | Note Effect sizes | that are no | | etatistically significant (n > 05) are hold and italicized | nt (n > 05) | are hold a | and italicized | | | | | | | | | | - | |---|--|---|--|---| · | | | | * | | | | | | | | | | | | | | | | | APPENDIX B: DIFFERENCES IN PREDICTED PERFORMANCE SCORES BY JOB FAMILY Table 1 | | | | | | | | | i | - | |------------|-----------|----------|----------|----------|----------|----------|----------|----------|----| | Job Family | CF | 0 | EL | FA | GM | MM | OF | SC | ST | | CL | 1 | | | | | | | | | | 00 | 3.892015 | ; | | | | | | | | | EL | 2.618116 | 1.740430 | ; | | | | | | | | FA | 2.628248 | 0.264133 | 0.822471 | ł | | | | | | | GM | 5.002585 | 2.218514 | 0.532043 | 1.418907 | ! | | | | | | MM | 12.441890 | 6.422752 | 3.911620 | 5.675906 | 1.945890 | ł | | | | | OF | 4.010194 | 1.267411 | 0.397983 | 0.669862 | 0.325321 | 2.739432 | ·
 | | | | SC | 1.415567 | 1.377832 | 0.332201 | 0.584810 | 1.462565 | 6.256495 | 1.041342 | 1 | | | ST | 1.167606 | 2.099922 | 0.414195 | 0.976016 | 1.710522 | 6.510473 | 1.169328 | 0.266785 | 1 | Note. Variances of composite differences are express in percentage (i.e., multiplied by 100). Table 2 | Differences in Fredicted Ferformance Scores by 500 Family (1/500 Family Configuration) | rreuicieu r | erjormance | ocores by Ju | 0 ramuy (1) | Jour ramily | Conjugaran | oraj | | |--|----------------|---------------|-----------------|----------------|-----------------|------------|----------|----------| | Job Family | CL1 | CL2 | CO1 | C02 | EL1 | EL2 | EL3 | FA | | CL1 | 1 | | ē . | | | | | | | CL2 | 1.735836 | i | | | | | | | | C01 | 8.021002 | 3.087820 | ; | | | | | | | C02 | 6.237076 | 1.620892 | 1.542914 | : | | | | | | EL1 | 6.669339 | 2.041411 | 3.081634 | 0.354608 | ł | | | | | EL2 | 5.329273 | 1.395066 | 2.849379 | 0.296286 | 0.242457 | ; | | | | EL3 | 2.279515 | 0.676620 | 4.774335 | 1.712869 | 1.458464 | 1.096957 | i | | | FA | 5.379435 | 1.189068 | 0.847776 | 0.216697 | 0.983075 | 0.715687 | 1.911736 | ŀ | | GM1 | 9.672718 | 4.447639 | 7.132130 | 2.196940 | 1.133051 | 1.373711 | 3.109155 | 3.543209 | | GM2 | 8.131839 | 2.626738 | 1.634354 | 0.194105 | 0.567426 | 0.598965 | 2.863516 | 0.530867 | | MM1 | 20.242374 | 11.222096 | 9.739843 | 5.294465 | 4.021937 | 5.386637 | 9.673917 | 7.178008 | | MM2 | 7.221701 | 2.816097 | 5.353999 | 1.277207 | 0.491684 | 0.746706 | 1.707696 | 2.157375 | | OF | 7.230601 | 2.113780 | 2.417866 | 0.216284 | 0.204383 | 0.466532 | 1.959067 | 0.669862 | | SC | 3.433732 | 0.529240 | 2.387426 | 0.576138 | 0.745359 | 0.338988 | 0.624314 | 0.584810 | | ST1 | 4.408539 | 0.861110 | 1.278158 | 0.374138 | 1.037940 | 0.832985 | 1.247799 | 0.194635 | | ST2 | 1.420300 | 0.912740 | 6.183152 | 2.874471 | 2.636458 | 1.997892 | 0.217716 | 2.924776 | | ST3 | 3.586894 | 1.002068 | 4.407834 | 1.086538 | 0.764826 | 0.455383 | 0.284409 | 1.466942 | | Note. Variances of composite differences are express in percentage (i.e., multiplied by 100) | s of composite | differences a | re express in p | ercentage (i.e | ., multiplied b | y 100). | = | | Table 2 (cont'd) Differences in Predicted Performance Scores by Job Family (17 Job Family Configuration) | וועועועועועו | Differences in Treatment effortmente acores of son Taning (1) and Taning | T STREET | | (T) Carrier T | | | 6 | | | |--------------|--|-----------|----------|---------------|----------|----------|----------|----------|-----| | Composite | GM1 | GM2 | MM1 | MM2 | OF | SC | ST1 | ST2 | ST3 | | CL1 | | | | | | | | | | | CL2 | | | | | | | | | | | CO1 | | | | | | | | | | | C02 | | | | | | | | | | | EL1 | | | | | | | | | | | EL2 | | | | | | | | | | | EL3 | | | | | | | | | | | FA | | | | | | | | | | | GM1 | : | | | | | | | | | | GM2 | 2.085484 | ; | | | | | | | | | MM1 | 2.751210 | 3.599278 | ; | | | | | | | | MM2 | 0.629146 | 3.887209 | 0.739252 | ; | | | | | | | OF | 1.475475 | 8.023234 | 1.603940 | 1.041342 | ŀ | | | | | | SC | 2.811299 | 8.147930 | 2.224060 | 0.834249 | 0.480994 | 1 | | | | | ST1 | 3.758731 | 12.012069 | 2.581212 | 3.220391 | 1.289976 | 0.480994 | 1 | | | | ST2 | 4.291467 | 7.219999 | 0.726863 | 1.169385 |
0.481461 | 1.289976 | 2.137008 | : | | | ST3 | 1.853602 | 3.599278 | 0.739252 | 1.041342 | 0.480994 | 0.481461 | 1.188982 | 0.684657 | ; | | | | | | · | 1. 11 11 | 1001 | | | | Note. Variances of composite differences are express in percentage (i.e., multiplied by 100). Table 3 Expected Reduction in Total R-Squared (R²) from Combining Job Families | The state of s | | and the second | | - Comman at 24 mm; cm (at / j); cm - Component & com | | | | | |--|-------|----------------|------------|--|--------------------|--------|-------|------------------------| | Job Family CL1 | CL1 | CL2 | CO1 | C02 | EL1 | EL2 | EL3 | $\mathbf{F}\mathbf{A}$ | | CL1 | ŀ | | | | | | | | | CL2 | .0455 | : | | | | | | | | CO1 | .2719 | .1494 | ŀ | | | | | | | CO2 | .1828 | .0641 | .0928 | ; | | | | | | EL1 | .1345 | .0501 | .0961 | 7600. | ŀ | | | | | EL2 | 0860. | .0306 | .0772 | .0071 | .0043 | ł | | | | EL3 | .0274 | .0091 | .0727 | .0244 | .0170 | .0121 | ŀ | | | FA | .1348 | .0383 | .0378 | 0800. | .0231 | .0151 | .0251 | ŀ | | GM1 | .1554 | .0833 | .1595 | .0445 | .0175 | .0197 | .0316 | .0643 | | GM2 | .1415 | .0540 | .0409 | .0044 | .0095 | .0092 | .0306 | .0105 | | MM1 | .5819 | .4323 | .5635 | .2417 | .1076 | .1277 | .1363 | .2591 | | MM2 | .1005 | .0447 | .0985 | .0217 | 9900. | .0094 | .0158 | .0333 | | OF | .2301 | .0935 | .1737 | .0117 | 0900 | .0120 | .0290 | .0275 | | SC | .0611 | .0112 | .0617 | .0133 | .0127 | .0053 | 8900. | .0119 | | ST1 | .1067 | .0265 | .0537 | .0132 | .0237 | .0171 | .0161 | .0057 | | ST2 | .0302 | .0239 | .2096 | .0842 | .0532 | .0367 | .0026 | .0733 | | ST3 | .0893 | .0320 | .1944 | .0398 | .0179 | 9600' | .0037 | .0443 | | Moto Vomonos | 1.: | differences o | o overtoon | porcontoro (i o | multiplied by 100) | , 100) | | | Table 3 (cont'd) Expected Reduction in Composite Validity (R²) from Combining Job Families | experien near | ארווחוו ווו רח | mposite run | ment (xx / from | mining (At) from commence as a finance | | I | | | | |-------------------|----------------|-------------|-----------------|---|-------|-------|-------|-------|-----| | Composite GM1 GM2 | GM1 | GM2 | MM1 | MM2 | OF | SC | ST1 | ST2 | ST3 | | CL1 | | | | İ | | | | | | | CL2 | | | | | | | | | | | CO1 | | | | | | | | | | | C02 | | | | | * | | | | | | EL1 | | | | | | | | | | | EL2 | | | | | | | | | | | EL3 | | | | | | | | | | | FA | | | | | | | | | | | GMI | ŀ | | | | | | | | | | GM2 | .0287 | ŀ | | | | | | | | | MM1 | .0550 | .0904 | | | | | | | | | MM2 | .0072 | .0184 | | 1 | | | | | | | OF | .0316 | .0070 | .2023 | .0131 | ; | | | | | | SC | .0394 | .0188 | | .0198 | .0257 | ; | | | | | ST1 | .0665 | .0194 | | .0336 | .0324 | .0095 | ; | | | | ST2 | 0690 | .0743 | | .0359 | .1025 | .0230 | .0517 | ł | | | ST3 | .0335 | .0368 | | .0112 | .0475 | 8600. | .0345 | .0170 | - | ST1 .0665 .0194 .2801 .0336 .0324 .009 ST2 .0690 .0743 .3452 .0359 .1025 .023 ST3 .0335 .0368 .2581 .0112 .0475 .009 Note. Variances of composite differences are express in percentage (i.e., multiplied by 100). APPENDIX C: SAS PROGRAMS FOR RUNNING K-FOLD DOUBLE CROSS-VALIDATION DESIGN FOR ESTIMATING MPP ``` Program applying the MPP K-Fold Validation macro program ... ************** options formchar='|-+++++' nodate nonumber; /* *** EDIT AS NEEDED *** Input data library */ libname kfvLib "D:\NEW AA\SAS Workspace\KFVPGMDISTN\InputData"; /* *** EDIT AS NEEDED *** Output data library */ libname mppsim "D:\NEW AA\SAS Workspace\KFVPGMDISTN\MmmSimData"; /* Include OPJM K-Fold Validation macros */ %let PRINT=OFF; /* *** EDIT AS NEEDED *** Directory where programs are located */ filename KFVPGM 'D:\NEW AA\SAS Workspace\KFVPGMDISTN\Programs'; %include KFVPGM(CreateSampleABC); %include KFVPGM(ComputeDescriptives); %include KFVPGM(Step1A correction unreliability KFV); %include KFVPGM(Step1B_correction_range-restriction_KFV); %include KFVPGM(Step2_JF_Validities_KFV); %include KFVPGM(Step3 Best Positive_Weights_KFV); %include KFVPGM(Step4&5 b to uk values KFV); %include KFVPGM(ComputeCriterionScores); %include KFVPGM(OptimalAssignmetPredictedScores); %include KFVPGM(KFoldEvalMpp); /* *** EDIT AS NEEDED *** Dump log output to file ... */ %let RUNLOG="D:\NEW AA\SAS Workspace\KFVPGMDISTN\MmmSimData\RUN KFoldEvalMpp 02022004.TXT"; proc printto log=&RUNLOG;run; /* *** EDIT AS NEEDED *** PREFIX of output files */ %let RUNPREFFNAME=YPP; /* *** EDIT AS NEEDED *** Random seed. /* NOTE: Use SAME SEED for all simulation configuration to do paired comparisons */ %let RUNSEED=1001; /* *** Edit RUNx macro vars in %LET STATEMENTS to specify simulation problem parameters */ %let RUNREPSTART=1; %let RUNREPEND=49; /** JF=9 , UNEQUAL Variance **/ %let RUNJF=JF9; ``` ``` %let RUNBETACONSTRAINT=NONE; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ %let RUNTIER=TIER1; /* TIER1=unequal variance, TIER2=equal variance */ RUNFNAME=&RUNPREFFNAME. &RUNJF. &RUNBETACONSTRAINT. &RUNTIER. &RUNREPSTART. & RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); %let RUNJF=JF9; %let RUNBETACONSTRAINT=POSITIVE1; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ %let RUNTIER=TIER1; /* TIER1=unequal variance, TIER2=equal variance */ %let RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT. &RUNTIER. &RUNREPSTART. & proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); %let RUNJF=JF9; %let RUNBETACONSTRAINT=POSITIVE2; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER1; variance */ %let RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT. &RUNTIER. &RUNREPSTART. & RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); /** JF=9 , EQUAL Variance **/ %let RUNJF=JF9; %let RUNBETACONSTRAINT=NONE; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER2; variance */ RUNFNAME=&RUNPREFFNAME. &RUNJF. &RUNBETACONSTRAINT. &RUNTIER. &RUNREPSTART. & RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); %let RUNJF=JF9; %let RUNBETACONSTRAINT=POSITIVE1; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ ``` ``` /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER2; variance */ %let RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART. & proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); %let RUNJF=JF9; %let RUNBETACONSTRAINT=POSITIVE2; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER2; variance */ RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._& RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); /** JF=17 , UNEQUAL Variance **/ %let RUNJF=JF17; %let RUNBETACONSTRAINT=NONE; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER1; variance */ RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._& RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, & RUNREPEND); %let RUNJF=JF17; %let RUNBETACONSTRAINT=POSITIVE1; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER1; variance */
RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._& RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, & RUNREPEND); %let RUNJF=JF17; /* POSITIVE1=JZV, POSITIVE2=HumRRO, %let RUNBETACONSTRAINT=POSITIVE2; NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER1; variance */ ``` %let RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._& RUNREPEND; ``` proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); /** JF=17 , EQUAL Variance **/ %let RUNJF=JF17; %let RUNBETACONSTRAINT=NONE; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER2; variance */ %let RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._& RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); */ %let RUNJF=JF17; %let RUNBETACONSTRAINT=POSITIVE1; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER2; variance */ %let RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._& proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); %let RUNJF=JF17; %let RUNBETACONSTRAINT=POSITIVE2; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE */ /* TIER1=unequal variance, TIER2=equal %let RUNTIER=TIER2; variance */ RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._& RUNREPEND; proc datasets library=mppsim; delete &RUNFNAME; quit; run; %KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R UNREPSTART, &RUNREPEND); /* RESET PROC PRINTO */ proc printto; run; ``` ``` Program that partitions the data into samples A(PP), B(AA), and C(Cross) *** REQUIRED IN SIMULATION *** **************** /* Initialize total number of MOS */ data _null_; set kfvLib.entrymos155 nobs=numMOS; put numMOS=numMOS; call symput('NUMMOS', numMOS); stop; run; /* read MOS sample size in Army input data */ %macro ReadMOSsizeArray; array asizeN{&NUMMOS} _temporary_; array asizeC{&NUMMOS} temporary_; do i=1 to &NUMMOS; set kfvLib.entrymos155 (keep = mosnumid obsN obsC); asizeN{mosnumid} = obsN; asizeC{mosnumid} = obsC; end; drop obsC obsN; %mend; /st partition the data into 3 parts: sampleDataA sampleDataB sampleDataC st/ %macro CreateSampleABC(IREP,REPSEED,NREPSAMPLEC); data SamplePartition; %ReadMOSsizeArray; do mosnumid=1 to &NUMMOS; sizeC = asizeC{mosnumid}; id = 0; do i=1 to asizeN{mosnumid}; id+1; inC = ((\&IREP-1)*sizeC < i <= (\&IREP)*sizeC); if (^inC) then randToSort = 1+uniform(&REPSEED); randToSort = -(1+uniform(&REPSEED)); output; end; end; drop sizeC i inC; proc sort data=SamplePartition; by mosnumid randToSort; run; data SamplePartition; %ReadMOSsizeArray; do mosnumid=1 to &NUMMOS; sizeOverallC+asizeC{mosnumid}; ``` ``` end; retain sizeA sizeC; do while(^last); set SamplePartition end=last; by mosnumid; if first.mosnumid then do; sizeC = asizeC{mosnumid}; sizeA = round((asizeN{mosnumid}-sizeC)/2); nA = 0; end; if (randToSort<0) then do;</pre> /* next two line cycle from: 1,2,3,4,&NREPSAMPLEC */ irepc = mod(irepc,&NREPSAMPLEC); irepc+1; sampleID = 'C'||left(put(irepc,2.)); end; else if (nA < sizeA) then do; sampleID = 'A'; nA+1; end; sampleID = 'B'; output; keep mosnumid id sampleID; proc sort data=SamplePartition; by mosnumid id; run; data sampleDataA sampleDataB %do ISAMPLEC=1 %to &NREPSAMPLEC; sampleDataC&ISAMPLEC %end; merge kfvLib.kfvArmyInput SamplePartition; by mosnumid id; if (sampleID='A') then output sampleDataA; else if (sampleID='B') then output sampleDataB; %do ISAMPLEC=1 %to &NREPSAMPLEC; else if (sampleID="C&ISAMPLEC") then output sampleDataC&ISAMPLEC; %end; run; %mend; ``` ``` Compute descriptives, correlations, and covariances for samples A(PP), B(AA) *** REQUIRED IN SIMULATION *** %macro ComputeDescriptives(SAMPLEDATA, MEANDATA, CORRDATA, COVDATA, COVDATA_ALL); proc means data=&SAMPLEDATA noprint; var GS AR NO CS AS MK MC EI VE SQT; by mosnumid; output out=tmp; proc transpose data=tmp out=&MEANDATA (keep= mosnumid _name_ mean std rename= (name =names std=sd)); var GS AR NO CS AS MK MC EI VE SQT; id stat; by mosnumid; run; proc corr data=&SAMPLEDATA noprint outp=&CORRDATA (where=(_type_='CORR') rename=(name =names)); var GS AR NO CS AS MK MC EI VE SQT; by mosnumid; run; proc corr data=&SAMPLEDATA noprint cov outp=&COVDATA (where=(_type_='COV') rename=(name =names)); var GS AR NO CS AS MK MC EI VE SQT; by mosnumid; run; proc corr data=&SAMPLEDATA noprint cov outp=&COVDATA_ALL (where=(_type_='COV') rename=(name =names)); var GS AR NO CS AS MK MC EI VE SQT; run; %mend; ``` ``` Correcting ASVAB-SQT validity coefficients and covariances for criterion unreliability OUTPUT DATASETS: Ryx CorrectRelib, Cyx CorrectRelib MOS INPUT DATASETS: Descriptive MOS, R_Samp_MOS, Info_MOS *** REQUIRED IN SIMULATION *** %macro CorrectUnreliability(Ryx_CorrectRelib_MOS,Cyx_CorrectRelib_MOS, Descriptive MOS, R Samp MOS, Info MOS); /* variable names for ASVAB subtests %let TESTNAMES=GS AR NO CS AS MK MC EI VE; proc iml; TestNames = {&TESTNAMES}; /* Read ASVAB-SQT correlations and numeric ID into XYcorr and MOSNumID */ use &R Samp MOS; read all var(TestNames) where(NAMES="SQT") into XYcorr; read all var{MOSNUMID} where(NAMES="SQT") into MOSNumID; close &R Samp MOS; /* Read SQT reliabilities into vector YYscal*/ use &Info MOS; read all var{RelYY} into YYscal; close &Info_MOS; NumMOS = nrow(MosNumID); /* =nrow(CorMat) */ NumTest =ncol(TestNames); /* correcting validity coefficients for attenuation using standard formula correctedRxy = XYcorr#(1/SQRT(YYscal)); /* initialize corrected covariance matrix */ correctedCVxy = repeat(0,NumMOS,NumTest); /* computing corrected covariances -- one ASVAB subtest column at a time */ use &Descriptive MOS; read all var{SD} where(names="SQT") into sdY; do iTest = 1 to NumTest; xName = TestNames[iTest]; read all var{SD} where(NAMES=xName) into sdX; correctedCVxy[,iTest] = correctedRxy[,iTest]#sdY#sdX; close &Descriptive_MOS; /* creating dataset of MOS corrected SQT-ASVAB correlations */ create &Ryx_CorrectRelib MOS var{MOSNUMID &TESTNAMES}; ``` ``` correctedRxy = MosNumID || correctedRxy; append from correctedRxy; close &Ryx_CorrectRelib_MOS; /* creating dataset of MOS corrected SQT-ASVAB covariances */ create &Cyx_CorrectRelib_MOS var{MOSNUMID &TESTNAMES}; correctedCVxy = MosNumID || correctedCVxy; append from correctedCVxy; close &Cyx_CorrectRelib_MOS; quit; run; %mend; ``` ``` Correcting ASVAB-SQT validity coefficients and covariances for range restriciton. OUTPUT DATASETS: Ryx_CorrectRelibRange_MOS INPUT DATASETS: C_RefPop,C_Samp_MOS,Cyx_CorrectRelib_MOS *** REOUIRED IN SIMULATION *** %macro CorrectRangeRestriction(Ryx_CorrectRelibRange_MOS, C RefPop, C_Samp_MOS, Cyx CorrectRelib_MOS); /* variable names for ASVAB subtests */ %let TESTNAMES=GS AR NO CS AS MK MC EI VE; proc iml; TestNames = {&TESTNAMES}; /* read REFERENCE POPULATION ASVAB subtests covariance */ use &C RefPop; read all var{&TESTNAMES} where(_TYPE_='COV' & names?TestNames) into PopCxx; close &C_RefPop; SDx = sqrt(vecdiag(PopCxx)); /* open MOS SQT-ASVAB covariance corrected for unreliability */ use &Cyx_CorrectRelib_MOS; read all var{MOSNUMID} into MosNumID; NumMOS = nrow(MosNumID); /* open MOS SQT-ASVAB sample variance-covariance -- no correction */ use &C_Samp_MOS; /* create output data for range-restriction corrected validaties */ create &Ryx_CorrectRelibRange_MOS var{MOSNUMID &TESTNAMES}; /*looping through MOSs listed under MOSTextID*/ do idxMOS=1 to NumMOS; /* read reliability corrected ASVAB-SQT covariance, uncorrected ASVAB variance-covariance, and uncorrected SQT variance from iTH MOS setin &Cyx CorrectRelib MOS; read all var{&TESTNAMES} where(MOSNUMID=idxMOS) into Cxc; *correctedCVxy; setin &C_Samp_MOS; read all var{&TESTNAMES} where(names?TestNames & MOSNUMID=idxMOS) into read all var{SQT} where(names='SQT' & MOSNUMID=idxMOS) into Cyy; /* compute range-restriction corrected ASVAB-SQT covariances for iTH MOS PopCxc = PopCxx*inv(Cxx)*Cxc`; PopCcc = Cyy+Cxc*inv(Cxx)*(PopCxc-Cxc`); ``` ``` /* compute range-restriction corrected ASVAB-SQT correlations for iTH MOS*/ PopRxc = (1/SDx/*Sxvec*/) # (PopCxc) # (1/sqrt(PopCcc)); /* append iTH MOS SQT-ASVAT correlations to output data */ TmpOutput = idxMOS || PopRxc`; setout &Ryx_CorrectRelibRange_MOS; append from TmpOutput; end; close &Cyx_CorrectRelib_MOS; close &C_Samp_MOS; close &C_Samp_MOS; close &Ryx_CorrectRelibRange_MOS; quit; run; %mend; ``` ``` Aggregating corrected ASVAB-SQT validity coefficients by job family. *** REQUIRED IN SIMULATION *** JFValid(JF_VALIDITY_DATA, MOS_VALIDITY_DATA, JF_SOLUTION, JF_CONFIG_DATA); /* variable names for ASVAB subtests */ %let TESTNAMES=GS AR NO CS AS MK MC EI VE; proc iml; /* open data containing Job Family MOS configuration */ use &JF CONFIG DATA; read all var{&JF_SOLUTION} into JFSolVec; /* Total number of JF in JFSolVec vector */ NumJF = max(JFSolVec); /* open data containing reference population MOS validities */ use &MOS VALIDITY_DATA; /* create output data set for aggregated JF validities */ create &JF_VALIDITY_DATA var{&JF_SOLUTION &TESTNAMES}; setout &JF_VALIDITY_DATA; do idxJF = 1 to NumJF; /st locate MOS in iTH job family and read acquisition weights st/ setin &JF_CONFIG_DATA; MOSJFIDX = loc(JFSolVec=idxJF); read point(MOSJFIDX) var{AcqN} into N_Wgt; /* read corrected validities of MOSs in iTH job family */ setin &MOS VALIDITY_DATA; read point(MOSJFIDX) var{&TESTNAMES} into XYvec; /* aggregate validity coefficients across MOS weighted by N ^{\circ} /* - note job family index is concatenated to output validity
vector */ JFCorr = idxJF || (diag(N_Wgt)*XYvec)[+,]/sum(N Wgt); append from JFCorr; end; close &JF CONFIG DATA; close &MOS VALIDITY_DATA; close &JF_VALIDITY_DATA; quit; run; %mend; ``` ``` Computing Beta Weights by job family. * Use macro argument CONSTRAINT to obtain different solutions: NONE = no constraint on subtest weights POSITIVE1 = Postive weights using Zeidner-Johnson-Vladimirsky stopping rule POSITIVE2 = Postive weights -- ignoring solutions with negative weights *** REQUIRED IN SIMULATION *** %macro BetaWeights(BETADATA, COVDATA, VALIDITYDATA, JFSOLUTION, CONSTRAINT); /* variable names for ASVAB subtests, excluding NO and CS */ %let TESTNAMES=GS AR AS MK MC EI VE; %let CORRDATA=TMPCORRDATA; proc iml; TestNames = {&TESTNAMES SQT}; NTests = ncol(TestNames); TYPE_={"MEAN", "STD", "N"}//j(NTests, 1, "CORR"); NAME =j(3,1,"")//t(TestNames); call symput('MNTESTS', char(NTests)); /* Used later for CONSTRAINT=POSITIVE */ call symput('MNTESTS ASVAB', char(NTests-1)); do i=1 to NTests; if(i<10) then MTESTNAME = concat('MTESTNAME', char(i,1,0)); MTESTNAME = concat('MTESTNAME', char(i,2,0)); call symput(MTESTNAME, TestNames[i]); end; use &COVDATA; read all var{&TESTNAMES} where((Names?TestNames) & (Names^?"SQT")) into RXX: close &COVDATA; SXX INV = sqrt(diag(1/RXX)); RXX = SXX INV*RXX*SXX INV; XMEAN = j(1, NTests, 0); XSTD = j(1, NTests, 1); /* NOT actual sample sizes, but does not matter for estimation */ = j(1, NTests, 10000); /* Read Validity Data Matrix -- Note that MOS/JF<->Row */ use &VALIDITYDATA; read all var{&TESTNAMES} into RXY ALL; ``` ``` read all var{&JFSOLUTION} into JFNO ALL; close &VALIDITYDATA; /* For each job family, read validities and create correlation matrix */ create &CORRDATA(Type=corr) var ({ &JFSOLUTION _TYPE_ _NAME_}||TestNames); do iJF = 1 to nrow(JFNO_ALL); IdxJF = JFNO ALL[iJF]; &JFSOLUTION = j(nrow(_TYPE_),1,IdxJF); RXY = RXY ALL[iJF,]; XCORR = (RXX//RXY) | | (t(RXY)//1); XDATA = XMEAN//XSTD//XN//XCORR; %do i=1 %to &&MNTESTS; &&MTESTNAME&i = XDATA[,&i]; %end; append; end; /* ENDOF: do iJF = 1 to nrow(JFNO_ALL) */ close &CORRDATA; quit; run; %if &CONSTRAINT=NONE %then %do; %let MODELOPTION=NOINT; %let KEEPOTHER=; %end; %else %do; %let MODELOPTION=NOINT SELECTION=RSQUARE B; %let KEEPOTHER=_RSQ__P_; %end; proc reg data=&CORRDATA outest=&BETADATA (keep=&JFSOLUTION &TESTNAMES &KEEPOTHER) model SQT = &TESTNAMES / &MODELOPTION; by &JFSOLUTION; quit; Zeidner-Johnson-Vladimirsky Non-negative Beta Weights APproach %if &CONSTRAINT=POSITIVE1 %then %do; proc sort data=&BETADATA; by &JFSOLUTION descending _P_ descending _RSQ_; run; /* Oragnize all possible solutions using two data sets: /* TmpBetaPositive: solutions with non-negative weights /* TmpBetaMax: solutions with maximum R for each JF & no. subtests pair */ data TmpBetaPositive ``` ``` TmpBetaMax (keep=&JFSOLUTION RSQ P_); array Beta {&MNTESTS ASVAB} &TESTNAMES; set &BETADATA; by &JFSOLUTION descending _P_ descending _RSQ_; NegativeWgtFlag = 0; do i=1 to &MNTESTS ASVAB; if (Beta\{i\}=.) then Beta\{i\}=0; NegativeWgtFlag = NegativeWgtFlag or (Beta{i}<0);</pre> /* output all solutions without negative weights */ if (^NegativeWgtFlag) then output TmpBetaPositive; /* output subset with maximum R overall for given number of subtests */ if (First._P_ and ^First.&JFSOLUTION) then do; P = P + 1; output TmpBetaMax; end; run; /* output positive weighted solutions with R2 >= max R2 in the next level data TmpCompare; keep &JFSOLUTION &TESTNAMES RSQ; merge TmpBetaPositive TmpBetaMax (rename=(RSQ =Rmax)); by &JFSOLUTION descending _P_; if(RSQ >= Rmax) then output; run; /* output only weights with maximum number of subsets for job family */ data &BETADATA; set TmpCompare; by &JFSOLUTION descending RSQ; if First.&JFSOLUTION then output; %end: /*********************************** HumRRO Simple Non-negative Beta Weights Approach: - Entirely ignore solutions with negative weights. %if &CONSTRAINT=POSITIVE2 %then %do; /* keep only solutions with all positive weights */ data TmpBetaPositive; array Beta {&MNTESTS_ASVAB} &TESTNAMES; set &BETADATA; do i=1 to &MNTESTS ASVAB; if (Beta\{i\}=.) then Beta\{i\}=0; else if (Beta{i}<0) then delete; end; run; proc sort data=TmpBetaPositive; by &JFSOLUTION descending RSQ; run; ``` ``` /* output all positive weights solution with maximum R2 */ data &BETADATA; keep &JFSOLUTION &TESTNAMES _RSQ_; set TmpBetaPositive; by &JFSOLUTION descending _RSQ_; if First.&JFSOLUTION then output; run; %end; %mend; ``` ``` Computing Beta Weights by job family. *** REQUIRED IN SIMULATION *** %macro UKWeights(UKDATA, COVDATA, POPDATA, BETADATA, JFNUM, TYPE); /* variable names for ASVAB subtests, excluding NO and CS */ %let TESTNAMES=GS AR AS MK MC EI VE; proc iml; Subtest = {&TESTNAMES}; /* predictor correlation matrix for Army Input Population*/ use &COVDATA; read all var{&TESTNAMES} where(names?Subtest) into CovMat; close &COVDATA; use &POPDATA; read all var{SD} where (test?Subtest) into SDvec; %if &TYPE=TIER1 %then %do; read all var{MEAN} where(test?Subtest) into Means; %end; close & POPDATA; SDProd = 1/(SDvec#SDvec); R = CovMat#SDProd`; /*reading in all JFs into JFNO ALL*/ use &BETADATA; read all var{&JFNUM} into JFNO_ALL; NumJF = nrow(JFNO_ALL); /*creating SAS dataset containing u weights and k values for all JFs */ create &UKDATA var{JFNO &TESTNAMES k}; do idxJF=1 to NumJF; /*converting beta weights to b-weights for MOS-level*/ setin &BETADATA; read all var{&TESTNAMES} where(&JFNUM=idxJF) into ObsBeta; bweights = ObsBeta#(1/SDvec`); /*transform b-weights to u and k values for Tier2 */ %if &TYPE=TIER2 %then %do; /* composite multiplier*/ CM = 20/(10*(SQRT(bweights*R*bweights`))); /* calculate U and K values */ Uvec = diag(CM)*bweights; K = (SUM(Uvec)*50)-100; ``` ``` %end; /*transform b-weights to u and k values for Tier1 */ %else %if &TYPE=TIER1 %then %do; /* calculate U and K values */ Uvec = bweights; /* sum ASVAB means weighted by their respective b-weight*/ K = SUM(Uvec#Means`); /*merging u values with k value and adding a column for JFNO*/ UKvec = J(nrow(K),1,idxJF) || Uvec || K; append from UKvec; end; close &UKDATA; close &BETADATA; quit; run; %mend; ``` ``` Compute criterion scores for individuals in sample &CrossSample Note: TYPE=ASSIGN prepare cost data in preparation for optimal classification using PROC TRANS. *** REQUIRED IN SIMULATION *** ************************ %macro ComputeCriterionScores(CriterionData, CrossSample, JFWgtData, JFSOLN, TYPE); %if &TYPE=ASSIGN %then %do; proc sort data=kfvlib.entryMOS150 out=tmp; by &JFSOLN; run; proc means data=tmp noprint; var allocKFV; by &JFSOLN; output out=AllocData sum=; run; %end; proc iml; use &JFWgtData; read all var{K GS AR AS MK MC EI VE} into WgtMat; close &JFWgtData; use &CrossSample; read all var {GS AR AS MK MC EI VE} into X; close &CrossSample; X = repeat(-1, nrow(X), 1) \mid \mid X; Y = X*t(WgtMat); create &CriterionData var("JF1":"&JFSOLN"); %if &TYPE=ASSIGN %then %do; use AllocData; read all var{allocKFV} into tmpvec; tmpvec = t(tmpvec); append from tmpvec; close AllocData; %end; append from Y; close &CriterionData; quit; run; ``` %mend; ``` ******* Optimally assign persons to JFSOLN jobs. The program then compute their predicted performance in their respective optimal jobs. *** REQUIRED IN SIMULATION *** *********************************** %macro OptimalAssignmentPredictedScores(OPJMData, EvalData, AssignData, JFSOLN); data TmpAssign; set &AssignData; if n >1 then do; person = 'P' || put(_n_-1,z4.); supply = 1; end; run; proc trans cost=TmpAssign out=AssignSolution maximum; tailnode person; headnode JF1-&JFSOLN; supply supply; run; data tmp; array AJF150{150} JF1-JF150; /* not all 150 use all the time */ set AssignSolution end=last; if _n_>1 and ^last; do &JFSOLN=1 to 150 until (AJF150{&JFSOLN}>0);end; randToSort = uniform(8000+&IREP); keep person &JFSOLN randToSort; run; proc sort data=tmp; by &JFSOLN randToSort; proc sort data=kfvlib.entryMOS150 out=tmp2; by &JFSOLN; run; data tmp2; set tmp2; do i=1 to allocKFV; output; end; keep &JFSOLN MOS150; run; data MOS150assignIdx; merge tmp tmp2; by &JFSOLN; keep MOS150 &JFSOLN person; proc sort data=MOS150assignIdx; by person; run; ``` proc iml; ``` use &EvalData; read all var("JF1":"JF150") into matY; close &EvalData; use MOS150assignIdx; read all var{MOS150} into MOS150idx; read all var{&JFSOLN} into JFSOLNidx; close MOS150assignIdx; assignN = nrow(matY); optY = repeat(0,assignN,1); do i=1 to assignN; optY[i] = matY[i,MOS150idx[i]]; end; outMat = repeat(&IREP,assignN,1)||repeat(&IREPC,assignN,1)||MOS150idx||JFSOLNidx||optY create &OPJMData var{REP REPC MOS150 &JFSOLN YPP}; append from outMat; close &OPJMData; quit; run; %mend; ``` ``` ***** Program implenting the K-Fold validation of JZ procedure ************* %macro KFoldEvalMPP(KFVOPJMDATA, RANDSEEDBASE, JFSOLN, BCONSTRAINT, UTIER, REPSTART, REPEND); /* Currently number of sample C partitions is fixed */ %let NUMREPC=5; %do IREP=&REPSTART %to &REPEND; %let REPSEED=%eval(&RANDSEEDBASE+&IREP); /* Partition data in samples A+B+C1+C2+...+C&NUMREPC */ %CreateSampleABC(&IREP, &REPSEED, &NUMREPC); /* Using sample A, compute weights for evaluation of MPP -- always based on JF150 */ * Compute descriptive stats; %ComputeDescriptives(SampleDataA, descripA, corrA, covA, covRefpopA); * Step 1 - correct MOS validity for criterion unreliability and restriction in range; %CorrectUnreliability(corXYA, corCVA, descripA, corrA, kfvLib.entrymos155); * note: range restriction correction relative to Army - covRefpopA computed from input data; %CorrectRangeRestriction(validityA,covRefpopA,covA,corCVA); * Step 2 - compute JF validities -- corrected to Army input population; %JFValid(JF150validityA, validityA, JF150, kfvLib.entrymos155); * Step 3 - compute beta weights -- CONSTRAINT=NONE for evaluation sample A ; %BetaWeights(JF150BetaA,covRefpopA,JF150validityA,JF150,NONE); * Step 4&5 -- final JF150 evaluation weights for computing MPP -- note param TIER1 ;
%UKWeights(JF150ukA,covRefpopA,kfvLib.PopDescripArmy,JF150BetaA,JF150,TIER1); /st Using sample B, compute assignment weights based on solution &JFSOLN st/ * Compute descriptive stats; %ComputeDescriptives(SampleDataB, descripB, corrB, covB, covRefpopB); * Step 1 - correct MOS validity for criterion unreliability and restriction in range; %CorrectUnreliability(corXYB,corCVB,descripB,corrB,kfvLib.entrymos155); * note: range restriction correction relative to Army - covRefpopA computed from input data; %CorrectRangeRestriction(validityB,covRefpopB,covB,corCVB); * Step 2 - compute &JFSOLN JF validities -- corrected to Army input population; %JFValid(JFSOLNvalidityB, validityB, &JFSOLN, kfvLib.entrymos155); * Step 3 - compute &JFSOLN beta weights -- CONSTRAINT=NONE for evaluation sample A ; ``` ``` %BetaWeights(JFSOLNBetaB,covRefpopB,JFSOLNvalidityB,&JFSOLN,&BCONSTRAINT); * Step 4&5 -- final &JFSOLN assignment weights -- note param NOT TIER2 (NOT want visible tier) ; %UKWeights(JFSOLNukB,covRefpopB,kfvLib.PopDescripArmy,JFSOLNBetaB,&JFSOLN,&UT /* Using sample C subsets */ %do IREPC=1 %to &NUMREPC; * Compute prediction/eval criterion scores using sampleA MOS150 LSE wgts (JF150ukA); %ComputeCriterionScores(CrossDataEval,SampleDataC&IREPC,JF150ukA,JF150,EVAL); * Compute analysis/assignment criterion scores using sampleB JF solution wgt ; %ComputeCriterionScores(CrossDataAssign,SampleDataC&IREPC,JFSOLNukB,&JFSOLN,A SSIGN); * Run optimal assignment; %OptimalAssignmentPredictedScores(RepOPJMdata,CrossDataEval,CrossDataAssign,& JFSOLN); * Append OPJM data ; proc append base=&KFVOPJMDATA data=RepOPJMdata; run; %end; %end: %mend; %let TMPJF=JF9; proc datasets; delete TmpMpp&TMPJF;run; %KFoldEvalMPP(TmpMpp&TMPJF, 1001, &TMPJF, POSITIVE1, TIER2, 1, 1); proc means data=TmpMpp&TMPJF; var YPP; class REPC; run; %let TMPJF=JF17; proc datasets; delete TmpMpp&TMPJF;run; %KFoldEvalMPP(TmpMpp&TMPJF, 49, 1001, &TMPJF, POSITIVE1, TIER2, 1, 1); proc means data=TmpMpp&TMPJF; var YPP; run; %let TMPJF=JF150; proc datasets; delete TmpMpp&TMPJF;run; %KFoldEvalMPP(TmpMpp&TMPJF, 49, 1001, &TMPJF, POSITIVE1, TIER2, 1, 1); proc means data=TmpMpp&TMPJF; var YPP; run; */ ``` ``` Calculate overall MPP by replication across conditions: NUM JF, BETA CONSTRAINT, TIER(a.k.a. EQUAL VARIANCE) **************************** options formchar='|-+++++' nodate nonumber; /* *** EDIT AS NEEDED *** Output data library */ libname mppsim "D:\NEW AA\SAS Workspace\KFVPGMDISTN\MmmSimData"; data ypp/view=ypp; set (in=in jf9 none tier1) mppsim.ypp_jf9_none_tier1_1_49 (in=in_jf9_none_tier2) mppsim.ypp_jf9_none_tier2_1_49 mppsim.ypp_jf9_positive1_tier1_1_49 (in=in_jf9_positive1_tier1) mppsim.ypp_jf9_positive1_tier2_1_49 (in=in_jf9_positive1_tier2) mppsim.ypp_jf9_positive2_tier1_1_49 (in=in_jf9_positive2_tier1) mppsim.ypp_jf9_positive2_tier2_1_49 (in=in_jf9_positive2_tier2) mppsim.ypp_jf17_none_tier1_1_49 (in=in jf17 none_tier1) (in=in_jf17_none_tier2) mppsim.ypp_jf17_none_tier2_1_49 mppsim.ypp_jf17_positive1_tier1_1_49(in=in_jf17_positive1_tier1) mppsim.ypp_jf17_positive1_tier2_1_49(in=in_jf17_positive1_tier2) mppsim.ypp jf17 positive2_tier1_1_49(in=in_jf17_positive2_tier1) mppsim.ypp_jf17_positive2_tier2_1_49(in=in_jf17_positive2_tier2) if in_jf9_none_tier1 then do; num jf=9; beta_constraint=0; tier=1; end; else if in_jf9_none_tier2 then do; num_jf=9; beta_constraint=0; tier=2; end; else if in_jf9_positivel_tier1 then do; num_jf=9; beta_constraint=1; tier=1; end; else if in_jf9_positive1_tier2 then do; num jf=9; beta_constraint=1; tier=2; end; else if in_jf9_positive2_tier1 then do; num_jf=9; beta_constraint=2; tier=1; end; else if in_jf9_positive2_tier2 then do; num_jf=9; beta_constraint=2; tier=2; end; else if in_jf17_none_tier1 then do; num_jf=17; beta_constraint=0; tier=1; end; else if in_jf17_none_tier2 then do; num jf=17; beta_constraint=0; tier=2; end; else if in_jf17_positivel_tier1 then do; num jf=17; beta constraint=1; tier=1; end; else if in_jf17_positive1_tier2 then do; num_jf=17; beta_constraint=1; tier=2; end; else if in_jf17_positive2_tier1 then do; num_jf=17; beta_constraint=2; tier=1; end; else if in_jf17_positive2_tier2 then do; num_jf=17; beta_constraint=2; tier=2; end; run; proc means data=ypp noprint; by num_jf beta_constraint tier rep repc; ``` var ypp; ``` output out=mpp_overall; run; data mppsim.mpp_overall; set mpp_overall; if _stat_='MEAN'; drop _type_ _freq_ _stat_; rename ypp=mpp; run; ``` APPENDIX D: PLOTTING OF MEAN MPP AND STANDARD ERROR BY MOS Figure 1 MPP and Standard Error by MOS and Job Family Configuration for CL, CO, and EL Job Families Using Unstandardized Test Composites UNEQUAL_NONE_CL+CO+EI Figure 2 MPP and Standard Error by MOS and Job Family Configuration for FA, GM, and MM Job Families Using Unstandardized Test Composites UNEQUAL_NONE_FA+GM+MM Figure 3 MPP and Standard Error by MOS and Job Family Configuration for OF, SC, and ST Job Families Using Unstandardized Test Composites UNEQUAL NONE OF+SC+ST Figure 4 MPP and Standard Error by MOS and Job Family Configuration for CL, CO, and EL Job Families Using Standardized Test Composites EQUAL NONE CL+CO+EL Figure 5 MPP and Standard Error by MOS and Job Family Configuration for FA, GM, and MM Job Families Using Standardized Test Composites Figure 6 MPP and Standard Error by MOS and Job Family Configuration for OF, SC, and ST Job Families Using Standardized Test Composites EQUAL_NONE_OF+SC+ST APPENDIX E: MEAN MPP AND STANDARD ERROR BY MOS Table 1 Mean MPP and Standard Error by MOS and Job Family Configuration Using Unstandardized Test Composites | | 9 | | 1 | | 15 | 0 | |----|---------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | | -0.3297 | 0.0393 | -0.4058 | 0.0403 | -0.4144 | 0.0396 | | 2 | -0.4746 | 0.0688 | -0.5741 | 0.0622 | -0.0269 | 0.1436 | | 3 | -0.4510 | 0.0704 | -0.5479 | 0.0625 | 0.0433 | 0.1425 | | 4 | -0.3512 | 0.1313 | -0.4513 | 0.1081 | -0.5072 | 0.1188 | | 5 | -0.4456 | 0.0619 | -0.0021 | 0.1082 | 0.0068 | 0.1390 | | 6 | -0.4704 | 0.1344 | 0.0051 | 0.1925 | 0.2718 | 0.2074 | | 7 | -0.4556 | 0.2633 | -0.0463 | 0.2350 | 0.1825 | 0.2876 | | 8 | -0.1445 | 0.1186 | -0.1415 | 0.1017 | -0.2375 | 0.0813 | | 9 | -0.1831 | 0.4007 | -0.1281 | 0.3687 | 0.4469 | 0.3883 | | 10 | -0.1736 | 0.2025 | -0.1855 | 0.1883 | 0.7865 | 0.1258 | | 11 | -0.2128 | 0.1520 | -0.2063 | 0.1379 | 0.3150 | 0.2186 | | 12 | 0.0123 | 0.1389 | 0.0391 | 0.1454 | -0.1940 | 0.2735 | | 13 | 0.0380 | 0.1800 | 0.0741 | 0.1919 | 0.0113 | 0.2650 | | 14 | -0.1195 | 0.2889 | -0.1167 | 0.2930 | -0.3314 | 0.3660 | | 15 | 0.3002 | 0.3634 | 0.3326 | 0.3944 | 0.4838 | 0.3600 | | 16 | 0.0825 | 0.2264 | 0.1410 | 0.2078 | 0.0078 | 0.3993 | | 17 | 0.1651 | 0.1445 | 0.2012 | 0.1439 | 0.4694 | 0.2095 | | 18 | 0.1306 | 0.1181 | 0.1647 | 0.1301 | 0.2463 | 0.1577 | | 19 | 0.0549 | 0.0919 | 0.0840 | 0.1000 | -0.0011 | 0.1873 | | 20 | -0.4915 | 0.0533 | 0.0054 | 0.0969 | 0.1133 | 0.1190 | | 21 | -0.4824 | 0.2015 | 0.0704 | 0.2204 | 0.1417 | 0.2352 | | 22 | -0.5818 | 0.3035 | 0.0465 | 0.3412 | 0.4829 | 0.2026 | | 23 | 0.3981 | 0.2120 | 0.2349 | 0.2400 | -0.2504 | 0.3626 | | 24 | 0.3878 | 0.5078 | 0.4778 | 0.4459 | 0.5613 | 0.5241 | | 25 | 0.3067 | 0.2012 | 0.1795 | 0.2376 | -0.2318 | 0.2239 | | 26 | 0.4595 | 0.4002 | 0.2685 | 0.3460 | 0.1748 | 0.3650 | | 27 | 0.0484 | 0.2164 | 0.0522 | 0.1981 | 0.6086 | 0.1467 | | 28 | 0.4725 | 0.1368 | 0.6098 | 0.1506 | 0.5491 | 0.1615 | | 29 | 0.4311 | 0.1285 | 0.2465 | 0.1536 | -0.0128 | 0.1737 | | 30 | 0.5357 | 0.2962 | 0.7513 | 0.2586 | 0.8172 | 0.2517 | | 31 | 0.3710 | 0.2233 | 0.4850 | 0.2141 | -0.3702 | 0.3323 | | 32 | 0.4698 | 0.2008 | 0.6188 | 0.1895 | 0.2690 | 0.2550 | | 33 | 0.5067 | 0.1213 | 0.2307 | 0.1656 | 0.6635 | 0.1151 | | 34 | 0.5398 | 0.3644 | 0.7191 | 0.3164 | 0.5718 | 0.4705 | | 35 | 0.4713 | 0.1450 | 0.2498 | 0.1393 | 0.1861 | 0.1840 | | 36 | 0.4907 | 0.3431 | 0.1925 | 0.3700 | 0.6257 | 0.2886 | | 37 | 0.4576 | 0.4852 | 0.2377 | 0.4780 | 0.0540 | 0.6860 | | 38 | 0.5809 | 0.3335 | 0.3589 | 0.3429 | 0.9124 | 0.2484 | Table 1 Mean MPP and Standard Error by MOS and Job Family Configuration Using Unstandardized Test Composites | | 9 | | 1 | 1 | 15 | 0 | |-----|--------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | 39 | 0.4754 | 0.2550 | 0.2979 | 0.2541 | 0.0106 | 0.2810 | | 40 | 0.4102 | 0.2297 | 0.5805 | 0.2158 | -0.0608 | 0.2279 | | 41 | 0.7189 | 0.3206 | 0.9237 | 0.2073 | -0.2811 | 0.4219 | | 42 | 0.9018 | 0.2269 | 1.1328 | 0.1590 | 0.8101 | 0.2528 | | 43 | 1.1310 | 0.4813 | 1.3845 | 0.3026 | 1.4615 | 0.2635 | | 44 | 0.7315 | 0.4134 | 1.0518 | 0.2447 | 0.4927 | 0.3455 | | 45 | 0.7526 | 0.3072 | 0.9239 | 0.2066 | -0.1171 | 0.4179 | | 46 | 0.3293 | 0.2340 | 0.2704 | 0.2294 | -0.3212 | 0.2874 | | 47 | 0.7378 | 0.2701 | 0.9841 | 0.1467 | 0.4478 | 0.2775 | | 48 | 0.6939 | 0.3889 | 0.8441 | 0.3048 | 0.3059 | 0.4134 | | 49 | 0.4681 | 0.3964 | 0.4033 | 0.3334 | 0.5696 | 0.4319 | | 50 | 0.6521 | 0.2288 | 0.8877 | 0.1738 | 0.4007 | 0.3043 | | 51 | 0.4548 | 0.4698 | 0.6803 | 0.3510 | 0.3726 | 0.5102 | | 52 | 0.7415 | 0.2023 | 0.1083 | 0.2288 | 0.2259 | 0.2064 | | 53 | 0.8759 | 0.3129 | 0.2101 | 0.4167 | 0.3375 | 0.4000 | | 54 | 0.4821 | 0.2374 | -0.0076 | 0.2819 | -0.3248 | 0.2910 | | -55 | 0.5149 | 0.4060 | 0.3019 | 0.3847 | 0.5404 | 0.4468 | | 56 | 0.0551 | 0.4980 | 0.1518 | 0.4269 | 0.1946 | 0.4501 | | 57 | 0.8038 | 0.2215 | 1.0725 | 0.1498 | 0.3470 | 0.2967 | | 58 | 1.0539 | 0.1481 | 1.3502 | 0.0859 | 1.4473 | 0.0650 | | 59 | 0.2701 | 0.1896 | 0.8224 | 0.1972 | 1.3187 | 0.1050 | | 60 | 0.7089 | 0.1441 | -0.0200 | 0.1768 | 0.1775 | 0.2126 | | 61 | 0.7405 | 0.4227 | 0.0067 | 0.4361 | 0.2885 | 0.3997 | | 62 | 0.4123 | 0.1895 | 0.1474 | 0.2082 | -0.3106 | 0.2464 | | 63 | 0.6409 | 0.1832 | 0.5703 | 0.1897 | 1.1173 | 0.1485 | | 64 | 0.8539 | 0.1495 | 0.1467 | 0.2050 | 0.5313 | 0.2271 | | 65 | 0.9489 | 0.2387 | 0.1628 | 0.3178 | 0.6533 | 0.3288 | | 66 | 0.7902 | 0.1621 | 0.1430 | 0.2335 | 0.2925
| 0.2684 | | 67 | 0.7550 | 0.0700 | 0.7198 | 0.0695 | 0.7930 | 0.0791 | | 68 | 0.7896 | 0.1933 | 0.7557 | 0.1881 | 0.7658 | 0.1931 | | 69 | 0.7714 | 0.1581 | 0.7153 | 0.1608 | 0.8830 | 0.2109 | | 70 | 0.6244 | 0.2869 | 0.5808 | 0.2999 | 0.2984 | 0.3052 | | 71 | 0.2647 | 0.1550 | 0.2008 | 0.1347 | -0.0659 | 0.2397 | | 72 | 0.4945 | 0.1524 | 0.4617 | 0.1609 | 0.1541 | 0.2307 | | 73 | 0.7614 | 0.3194 | 0.7194 | 0.3204 | 0.6957 | 0.3291 | | 74 | 0.7359 | 0.1094 | 0.6955 | 0.1060 | 0.6346 | 0.1437 | | 75 | 0.6921 | 0.1084 | 0.6537 | 0.1037 | 0.4231 | 0.1190 | | 76 | 0.6842 | 0.1176 | 0.6505 | 0.1184 | 0.9576 | 0.1251 | Table 1 Mean MPP and Standard Error by MOS and Job Family Configuration Using Unstandardized Test Composites | | 9 | | 17 | | 15 | 0 | |-----|---------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | 77 | 0.7719 | 0.2098 | 0.7042 | 0.2038 | 0.8840 | 0.2185 | | 78 | 0.4775 | 0.2007 | 1.0105 | 0.1675 | 0.9972 | 0.1881 | | 79 | 0.4428 | 0.2865 | 0.9183 | 0.1837 | 0.3313 | 0.3606 | | 80 | 0.4325 | 0.1888 | 0.9186 | 0.1829 | 0.8670 | 0.2447 | | 81 | 0.4152 | 0.2573 | 0.9662 | 0.2020 | 1.1654 | 0.1274 | | 82 | 0.3934 | 0.2163 | 0.7360 | 0.1628 | -0.0083 | 0.2246 | | 83 | 0.5319 | 0.2118 | 0.8913 | 0.1697 | 0.6592 | 0.2174 | | 84 | 0.0084 | 0.3041 | 0.3979 | 0.2234 | -0.0488 | 0.2743 | | 85 | 0.1956 | 0.3420 | 0.7613 | 0.2428 | -0.0907 | 0.3588 | | 86 | 0.3956 | 0.4638 | 0.9097 | 0.3196 | 0.8181 | 0.3439 | | 87 | 0.1780 | 0.5084 | 0.8672 | 0.3052 | 0.7000 | 0.3786 | | 88 | 0.4513 | 0.2205 | 0.1843 | 0.2521 | -0.1457 | 0.3318 | | 89 | 0.4175 | 0.3315 | 0.2164 | 0.3394 | 0.1113 | 0.3735 | | 90 | 0.4961 | 0.4279 | 0.3315 | 0.4287 | 0.2973 | 0.4564 | | 91 | 0.4401 | 0.5062 | 0.3622 | 0.4708 | 0.7686 | 0.2700 | | 92 | 0.1623 | 0.3303 | 0.2665 | 0.3133 | 0.8874 | 0.2164 | | 93 | 0.1836 | 0.2855 | 0.3350 | 0.3010 | 0.5318 | 0.2927 | | 94 | 0.2805 | 0.1104 | 0.3795 | 0.1109 | 0.3830 | 0.1111 | | 95 | 0.0223 | 0.3239 | 0.1592 | 0.2922 | 0.2179 | 0.2389 | | 96 | 0.0687 | 0.2124 | 0.0609 | 0.1822 | -0.1148 | 0.1895 | | 97 | 0.1409 | 0.2111 | 0.1442 | 0.1916 | -0.0605 | 0.1844 | | 98 | 0.2714 | 0.2105 | 0.3533 | 0.2055 | 0.0636 | 0.1459 | | 99 | 0.2614 | 0.4901 | 0.3942 | 0.4377 | 0.4817 | 0.4024 | | 100 | 0.4806 | 0.3771 | 0.6982 | 0.2950 | 0.4783 | 0.3105 | | 101 | 0.1716 | 0.1542 | 0.2299 | 0.1372 | 0.6890 | 0.1264 | | 102 | 0.1562 | 0.4031 | 0.2399 | 0.3809 | 0.3552 | 0.2631 | | 103 | 0.1358 | 0.3841 | 0.2082 | 0.4049 | 0.2774 | 0.2545 | | 104 | 0.2584 | 0.3426 | 0.3236 | 0.3089 | 0.7747 | 0.2510 | | 105 | 0.2070 | 0.2737 | 0.2698 | 0.2709 | 0.1248 | 0.2995 | | 106 | 0.2000 | 0.3939 | 0.1353 | 0.3502 | 0.3140 | 0.3161 | | 107 | 0.1966 | 0.1631 | 0.2565 | 0.1661 | 0.2699 | 0.1453 | | 108 | -0.1705 | 0.1086 | -0.1498 | 0.1130 | -0.0697 | 0.1705 | | 109 | 0.0057 | 0.3460 | 0.0031 | 0.3026 | 0.4686 | 0.2978 | | 110 | -0.3623 | 0.1272 | -0.2676 | 0.1440 | 0.7465 | 0.1099 | | 111 | 0.5933 | 0.3269 | -0.0039 | 0.3360 | -0.1909 | 0.3542 | | 112 | 0.0707 | 0.3171 | 0.1246 | 0.2870 | -0.4060 | 0.2849 | | 113 | 0.3225 | 0.3011 | 0.8078 | 0.2338 | 0.9784 | 0.2584 | | 114 | 0.5673 | 0.1471 | 0.0624 | 0.1679 | -0.2834 | 0.1847 | Table 1 Mean MPP and Standard Error by MOS and Job Family Configuration Using Unstandardized Test Composites | | 9 | | 17 | | 15 | 0 | |-----|--------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | 115 | 0.1932 | 0.0739 | 0.2216 | 0.0747 | 0.0577 | 0.0926 | | 116 | 0.1715 | 0.2335 | 0.2084 | 0.2113 | -0.2086 | 0.1497 | | 117 | 0.2349 | 0.0791 | -0.3548 | 0.0848 | -0.2189 | 0.1145 | | 118 | 0.4138 | 0.3338 | -0.3018 | 0.2568 | 0.3733 | 0.3447 | | 119 | 0.3243 | 0.1891 | -0.0870 | 0.1538 | -0.1271 | 0.1737 | | 120 | 0.0861 | 0.2479 | -0.2330 | 0.2168 | -0.2502 | 0.2850 | | 121 | 0.3865 | 0.4985 | -0.3716 | 0.4199 | 0.3974 | 0.5774 | | 122 | 0.1947 | 0.1904 | -0.2337 | 0.1466 | 0.0424 | 0.1595 | | 123 | 0.0086 | 0.3536 | 0.0143 | 0.3685 | 0.0644 | 0.3640 | | 124 | 0.3705 | 0.4708 | -0.4123 | 0.3144 | 0.2632 | 0.4409 | | 125 | 0.4141 | 0.4829 | -0.3189 | 0.3639 | 0.5441 | 0.4066 | | 126 | 0.3910 | 0.4796 | -0.3730 | 0.3327 | 0.6318 | 0.4166 | | 127 | 0.2639 | 0.4416 | -0.3485 | 0.3099 | -0.0150 | 0.4025 | | 128 | 0.2638 | 0.3543 | -0.2772 | 0.3103 | -0.3270 | 0.3809 | | 129 | 0.3425 | 0.2166 | -0.1500 | 0.2120 | -0.2217 | 0.2448 | | 130 | 0.0799 | 0.0912 | 0.0598 | 0.0972 | 0.3271 | 0.1030 | | 131 | 0.1556 | 0.1025 | 0.1893 | 0.1100 | 0.6909 | 0.0891 | | 132 | 0.6559 | 0.3341 | -0.0329 | 0.3576 | -0.1247 | 0.4246 | | 133 | 0.5462 | 0.1812 | 0.0778 | 0.2149 | -0.1878 | 0.2070 | | 134 | 0.0613 | 0.0787 | 0.0129 | 0.0831 | -0.2451 | 0.0760 | | 135 | 0.3237 | 0.2291 | 0.6426 | 0.1899 | -0.0313 | 0.2619 | | 136 | 0.5305 | 0.3808 | 0.9674 | 0.2718 | 1.2406 | 0.1460 | | 137 | 0.3032 | 0.0938 | 0.6422 | 0.0892 | 0.1868 | 0.1765 | | 138 | 0.1932 | 0.3351 | 0.4819 | 0.2730 | -0.4357 | 0.4240 | | 139 | 0.5205 | 0.2687 | 0.7885 | 0.2616 | 1.2125 | 0.1602 | | 140 | 0.4323 | 0.3974 | 0.5747 | 0.3594 | 1.0827 | 0.2970 | | 141 | 0.5042 | 0.2816 | 0.6073 | 0.2403 | 0.5102 | 0.2963 | | 142 | 0.4622 | 0.2570 | 0.6160 | 0.2579 | 0.4739 | 0.3298 | | 143 | 0.4265 | 0.2154 | 0.6289 | 0.2263 | 0.7558 | 0.2853 | | 144 | 0.2347 | 0.1221 | 0.3181 | 0.1617 | -0.4737 | 0.1833 | | 145 | 0.3140 | 0.2848 | 0.4912 | 0.2562 | 0.0384 | 0.2527 | | 146 | 0.3494 | 0.2604 | 0.5566 | 0.2644 | 0.6351 | 0.3059 | | 147 | 0.3616 | 0.3183 | 0.6407 | 0.2327 | 0.3124 | 0.3541 | | 148 | 0.4385 | 0.1973 | 0.1672 | 0.2384 | 0.2474 | 0.3314 | | 149 | 0.3093 | 0.2214 | 0.4016 | 0.2246 | -0.0614 | 0.3888 | | 150 | 0.0084 | 0.1789 | 0.0287 | 0.1763 | -0.2595 | 0.3239 | Table 2 Mean MPP and Standard Error by MOS and Job Family Configuration Using Standardized Test Composites | | 9 | | 17 | | 15 | 0 | |----|---------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | 1 | 0.2092 | 0.0442 | 0.1945 | 0.0669 | 0.2214 | 0.0882 | | 2 | 0.2419 | 0.1143 | 0.2212 | 0.1381 | 0.2460 | 0.1643 | | 3 | 0.2784 | 0.1146 | 0.2553 | 0.1363 | 0.2901 | 0.1856 | | 4 | 0.1842 | 0.2131 | 0.1973 | 0.2526 | 0.1635 | 0.2353 | | 5 | 0.2662 | 0.0880 | 0.1275 | 0.1407 | 0.2971 | 0.1534 | | 6 | 0.3243 | 0.2371 | 0.1427 | 0.2606 | 0.2218 | 0.2290 | | 7 | 0.2459 | 0.3620 | 0.1340 | 0.3530 | 0.1004 | 0.2942 | | 8 | 0.0675 | 0.1162 | 0.1394 | 0.1404 | 0.2092 | 0.1497 | | 9 | 0.0870 | 0.5066 | 0.2123 | 0.5106 | 0.0483 | 0.4739 | | 10 | 0.1206 | 0.2835 | 0.2208 | 0.3016 | 0.0742 | 0.3008 | | 11 | 0.0567 | 0.1892 | 0.1253 | 0.2116 | 0.0882 | 0.2112 | | 12 | 0.0012 | 0.1489 | 0.0290 | 0.1506 | -0.1797 | 0.2635 | | 13 | -0.0024 | 0.2148 | 0.0662 | 0.2363 | 0.0210 | 0.3205 | | 14 | -0.2571 | 0.3573 | -0.2193 | 0.3674 | -0.1797 | 0.3124 | | 15 | 0.3288 | 0.4683 | 0.2987 | 0.4812 | 0.1646 | 0.4301 | | 16 | 0.0663 | 0.2848 | 0.1358 | 0.2707 | -0.1289 | 0.3257 | | 17 | 0.1346 | 0.1721 | 0.1827 | 0.1830 | 0.1504 | 0.2360 | | 18 | 0.1115 | 0.1447 | 0.1530 | 0.1480 | 0.2145 | 0.1862 | | 19 | 0.0485 | 0.1089 | 0.0710 | 0.1094 | -0.0559 | 0.1885 | | 20 | 0.2372 | 0.0844 | 0.1424 | 0.1459 | 0.1079 | 0.1374 | | 21 | 0.2741 | 0.3820 | 0.1921 | 0.3631 | 0.0140 | 0.2953 | | 22 | 0.2980 | 0.5839 | 0.2179 | 0.5463 | 0.3088 | 0.4735 | | 23 | -0.0018 | 0.3211 | 0.0392 | 0.3116 | -0.2051 | 0.3175 | | 24 | -0.2103 | 0.5536 | -0.3076 | 0.5167 | -0.2588 | 0.5413 | | 25 | -0.0208 | 0.2458 | -0.1744 | 0.2530 | -0.1285 | 0.2451 | | 26 | -0.0554 | 0.5928 | -0.2233 | 0.4756 | -0.3073 | 0.3232 | | 27 | -0.1202 | 0.1491 | -0.0751 | 0.1647 | -0.0663 | 0.1963 | | 28 | -0.0421 | 0.1322 | 0.2574 | 0.1932 | 0.3745 | 0.2837 | | 29 | -0.0257 | 0.1586 | 0.0408 | 0.1671 | 0.1650 | 0.2086 | | 30 | -0.0760 | 0.3561 | 0.3236 | 0.4576 | 0.1205 | 0.4384 | | 31 | 0.0789 | 0.2732 | 0.2615 | 0.3390 | -0.2553 | 0.2918 | | 32 | -0.0324 | 0.2549 | 0.2465 | 0.3203 | 0.2144 | 0.3174 | | 33 | -0.0183 | 0.1523 | -0.0034 | 0.1653 | 0.1721 | 0.2281 | | 34 | -0.0390 | 0.4816 | 0.3283 | 0.5138 | -0.4029 | 0.4880 | | 35 | -0.0114 | 0.1740 | 0.0337 | 0.1712 | 0.1215 | 0.2188 | | 36 | -0.1077 | 0.4520 | -0.4117 | 0.3659 | -0.1501 | 0.3920 | | 37 | -0.0583 | 0.6224 | -0.2215 | 0.5154 | -0.3334 | 0.5577 | | 38 | -0.0015 | 0.4115 | -0.2066 | 0.3714 | -0.2417 | 0.3488 | Table 2 Mean MPP and Standard Error by MOS and Job Family Configuration Using Standardized Test Composites | | 9 | (| 17 | | 15 | 0 | |----|---------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | 39 | 0.0478 | 0.3503 | -0.1530 | 0.3016 | -0.3583 | 0.2270 | | 40 | -0.0559 | 0.3087 | 0.2225 | 0.3529 | 0.1317 | 0.3182 | | 41 | 0.2967 | 0.4949 | 0.1272 | 0.4902 | -0.3815 | 0.4099 | | 42 | 0.3287 | 0.3703 | 0.0969 | 0.3914 | -0.0075 | 0.2778 | | 43 | 0.2686 | 0.7055 | 0.1279 | 0.7092 | 0.3384 | 0.6567 | | 44 | 0.2227 | 0.5825 | 0.0034 | 0.6198 | -0.0476 | 0.3878 | | 45 | 0.3466 | 0.4252 | 0.1666 | 0.4604 | -0.1318 | 0.4362 | | 46 | 0.0409 | 0.2398 | 0.0481 | 0.2348 | -0.1138 | 0.3500 | | 47 | 0.1680 | 0.3732 | 0.1286 | 0.3799 | -0.0710 | 0.3749 | | 48 | 0.1537 | 0.5075 | -0.1374 | 0.4752 | -0.0486 | 0.3783 | | 49 | 0.0925 | 0.3916 | 0.0584 | 0.3808 | -0.0114 | 0.4619 | | 50 | 0.3023 | 0.3550 | 0.2784 | 0.3715 | 0.2111 | 0.3195 | | 51 | 0.0286 | 0.5781 | -0.0602 | 0.4909 | -0.1445 | 0.4479 | | 52 | 0.2769 | 0.2804 | 0.3025 | 0.3040 | 0.2842 | 0.2943 | | 53 | 0.4033 | 0.5179 | 0.4339 | 0.4856 | 0.0972 | 0.4549 | | 54 | 0.1982 | 0.3945 | 0.1581 | 0.4159 | -0.1708 | 0.3593 | | 55 | 0.0601 | 0.5426 | -0.0207 | 0.4978 | 0.2265 | 0.5259 | | 56 | -0.3323 | 0.4904 | -0.4291 | 0.4495 | 0.0658 | 0.4787 | | 57 | 0.3295 | 0.3195 | 0.2504 | 0.3192 | -0.1164 | 0.2948 | | 58 | 0.4209 | 0.1883 | 0.2607 | 0.2065 | 0.5545 | 0.2348 | | 59 | -0.3709 | 0.1884 | -0.3286 | 0.2628 | 0.4078 | 0.3030 | | 60 | 0.2270 | 0.1961 | 0.2358 | 0.2399 | -0.0968 | 0.2183 | | 61 | 0.2289 | 0.6367 | 0.3146 | 0.5379 | -0.1988 | 0.3929 | | 62 | 0.1536 | 0.2778 |
0.2201 | 0.2745 | -0.0382 | 0.2481 | | 63 | 0.2029 | 0.1965 | 0.1861 | 0.2138 | 0.4981 | 0.2664 | | 64 | 0.3390 | 0.2544 | 0.3946 | 0.2651 | 0.2604 | 0.2443 | | 65 | 0.3595 | 0.4090 | 0.4012 | 0.3896 | 0.0843 | 0.3415 | | 66 | 0.2859 | 0.2564 | 0.3691 | 0.2806 | 0.1256 | 0.2765 | | 67 | 0.3757 | 0.0798 | 0.3786 | 0.0788 | 0.4309 | 0.0805 | | 68 | 0.3778 | 0.2691 | 0.4119 | 0.2298 | 0.2694 | 0.2410 | | 69 | 0.3605 | 0.1963 | 0.3910 | 0.1764 | 0.3915 | 0.2110 | | 70 | 0.2839 | 0.3645 | 0.2894 | 0.3319 | 0.2393 | 0.3861 | | 71 | -0.0270 | 0.1342 | -0.0711 | 0.1418 | -0.1013 | 0.2202 | | 72 | 0.1839 | 0.1631 | 0.1921 | 0.1723 | 0.1481 | 0.1889 | | 73 | 0.4040 | 0.3977 | 0.3749 | 0.3922 | 0.2711 | 0.3490 | | 74 | 0.3808 | 0.1413 | 0.3597 | 0.1304 | 0.2162 | 0.1424 | | 75 | 0.3542 | 0.1252 | 0.3576 | 0.1214 | 0.2690 | 0.1487 | | 76 | 0.2817 | 0.1451 | 0.2708 | 0.1396 | 0.4403 | 0.1457 | Table 2 Mean MPP and Standard Error by MOS and Job Family Configuration Using Standardized Test Composites | | 9 | | 17 | | 15 | 0 | |-----|---------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | 77 | 0.3710 | 0.2516 | 0.3479 | 0.2488 | 0.2105 | 0.2650 | | 78 | 0.0983 | 0.2300 | 0.0315 | 0.2720 | -0.0018 | 0.3139 | | 79 | 0.0396 | 0.3014 | 0.0149 | 0.3444 | -0.2178 | 0.4148 | | 80 | 0.0411 | 0.1890 | -0.0284 | 0.2669 | 0.0164 | 0.3527 | | 81 | -0.0301 | 0.2627 | -0.0921 | 0.3376 | 0.2238 | 0.3959 | | 82 | 0.1023 | 0.2377 | 0.0220 | 0.3038 | 0.0554 | 0.2771 | | 83 | 0.1440 | 0.2438 | 0.0056 | 0.3249 | 0.2659 | 0.2724 | | 84 | -0.1724 | 0.2731 | -0.0271 | 0.2782 | 0.0224 | 0.2887 | | 85 | -0.0467 | 0.3476 | -0.0239 | 0.3816 | -0.2811 | 0.3790 | | 86 | -0.1311 | 0.4401 | -0.1374 | 0.5357 | 0.0740 | 0.6328 | | 87 | -0.2688 | 0.4267 | -0.2305 | 0.4827 | -0.0339 | 0.5121 | | 88 | -0.0391 | 0.3226 | -0.2328 | 0.2727 | -0.1474 | 0.3388 | | 89 | -0.0515 | 0.4473 | 0.0065 | 0.4280 | 0.1445 | 0.4104 | | 90 | 0.0081 | 0.5574 | -0.1482 | 0.4808 | -0.3044 | 0.4756 | | 91 | -0.1138 | 0.6056 | -0.1750 | 0.5348 | -0.0395 | 0.4904 | | 92 | 0.0362 | 0.3776 | -0.0029 | 0.3511 | -0.0951 | 0.3254 | | 93 | 0.0465 | 0.3221 | 0.1088 | 0.3048 | 0.1569 | 0.2567 | | 94 | 0.1662 | 0.1211 | 0.1475 | 0.1205 | 0.1167 | 0.1195 | | 95 | -0.1164 | 0.3394 | -0.1114 | 0.3121 | -0.1971 | 0.2574 | | 96 | -0.0476 | 0.1823 | -0.0433 | 0.1807 | 0.0479 | 0.2158 | | 97 | 0.0496 | 0.2188 | 0.0522 | 0.2230 | 0.1650 | 0.2262 | | 98 | 0.1620 | 0.2340 | 0.1470 | 0.2142 | 0.1472 | 0.2030 | | 99 | 0.1553 | 0.4692 | 0.1759 | 0.4514 | 0.1538 | 0.4313 | | 100 | 0.0589 | 0.4904 | 0.0577 | 0.4856 | -0.1357 | 0.3365 | | 101 | 0.0526 | 0.1707 | -0.0123 | 0.1583 | 0.0931 | 0.1931 | | 102 | 0.0388 | 0.4184 | 0.0063 | 0.3914 | 0.1362 | 0.4367 | | 103 | 0.0328 | 0.4144 | -0.0111 | 0.3707 | 0.1197 | 0.3836 | | 104 | 0.0977 | 0.3453 | 0.0647 | 0.3240 | 0.0420 | 0.3101 | | 105 | 0.1282 | 0.2869 | 0.0625 | 0.2906 | 0.0852 | 0.3234 | | 106 | 0.1168 | 0.4441 | 0.1141 | 0.4780 | 0.0893 | 0.3914 | | 107 | 0.0943 | 0.1812 | 0.0422 | 0.1707 | 0.1602 | 0.1805 | | 108 | -0.2802 | 0.1162 | -0.1590 | 0.1260 | 0.0259 | 0.1865 | | 109 | -0.1245 | 0.3375 | -0.0573 | 0.3680 | -0.1875 | 0.3247 | | 110 | -0.4798 | 0.1178 | -0.2738 | 0.1420 | 0.5121 | 0.2211 | | 111 | 0.0935 | 0.4405 | 0.1563 | 0.4545 | 0.0068 | 0.4052 | | 112 | -0.1995 | 0.3154 | -0.2670 | 0.3071 | -0.2355 | 0.3393 | | 113 | -0.2982 | 0.3066 | -0.2834 | 0.3406 | 0.1070 | 0.3434 | | 114 | 0.1505 | 0.2104 | 0.2350 | 0.1994 | -0.0024 | 0.2316 | Table 2 Mean MPP and Standard Error by MOS and Job Family Configuration Using Standardized Test Composites | 8 944
13 18 | . 9 | | 17 | | 15 | 0 | |----------------|---------|--------|---------|--------|---------|--------| | | Mean | Std | Mean | Std | Mean | Std | | 115 | 0.1675 | 0.0691 | 0.2046 | 0.0763 | 0.2926 | 0.0929 | | 116 | 0.0739 | 0.2504 | 0.0887 | 0.2301 | -0.0247 | 0.1957 | | 117 | -0.1758 | 0.0746 | -0.1116 | 0.1153 | 0.0012 | 0.1294 | | 118 | -0.0530 | 0.3800 | 0.0244 | 0.3863 | 0.0397 | 0.3383 | | 119 | 0.0598 | 0.2567 | 0.0740 | 0.2661 | 0.0489 | 0.2158 | | 120 | -0.0941 | 0.2511 | -0.1466 | 0.2360 | -0.1144 | 0.3440 | | 121 | -0.0976 | 0.5841 | -0.0030 | 0.5975 | -0.3409 | 0.5327 | | 122 | -0.0733 | 0.2067 | -0.1064 | 0.2288 | 0.2287 | 0.2023 | | 123 | -0.0752 | 0.4769 | -0.0137 | 0.4812 | -0.1315 | 0.3522 | | 124 | -0.1376 | 0.5535 | -0.0763 | 0.5115 | 0.0249 | 0.4653 | | 125 | -0.1190 | 0.5191 | -0.0176 | 0.5292 | 0.0264 | 0.5079 | | 126 | -0.1901 | 0.5799 | 0.0219 | 0.5502 | -0.0570 | 0.6030 | | 127 | -0.1986 | 0.4761 | -0.1150 | 0.4794 | -0.0828 | 0.4154 | | 128 | -0.0700 | 0.4207 | -0.0880 | 0.4327 | -0.3498 | 0.4065 | | 129 | 0.0104 | 0.2845 | 0.0613 | 0.3191 | -0.2109 | 0.2495 | | 130 | -0.0294 | 0.0956 | 0.0605 | 0.0984 | 0.1151 | 0.1077 | | 131 | 0.1443 | 0.0991 | 0.1830 | 0.0986 | 0.0304 | 0.1199 | | 132 | 0.2379 | 0.4820 | 0.2479 | 0.4880 | -0.2534 | 0.4400 | | 133 | 0.1138 | 0.2195 | 0.2048 | 0.2328 | 0.1330 | 0.2243 | | 134 | -0.0269 | 0.0849 | 0.0148 | 0.0868 | 0.0122 | 0.1087 | | 135 | -0.0968 | 0.2873 | -0.0735 | 0.2900 | -0.2651 | 0.2382 | | 136 | -0.0786 | 0.4505 | -0.1035 | 0.4752 | -0.1617 | 0.4239 | | 137 | -0.1547 | 0.0830 | -0.1657 | 0.1435 | -0.1590 | 0.1416 | | 138 | -0.0817 | 0.3741 | -0.1146 | 0.3798 | -0.3321 | 0.3678 | | 139 | -0.1373 | 0.2873 | -0.1737 | 0.2979 | -0.2191 | 0.3323 | | 140 | -0.3185 | 0.4141 | -0.3983 | 0.4129 | -0.2157 | 0.5677 | | 141 | -0.0340 | 0.4171 | 0.1995 | 0.5144 | -0.1206 | 0.3077 | | 142 | -0.0304 | 0.3477 | -0.0972 | 0.3213 | -0.1356 | 0.3065 | | 143 | -0.1528 | 0.2336 | -0.2712 | 0.2677 | -0.3618 | 0.3274 | | 144 | -0.1271 | 0.1336 | -0.2205 | 0.1621 | -0.2901 | 0.1860 | | 145 | -0.1318 | 0.3163 | -0.1692 | 0.3033 | -0.1019 | 0.2701 | | 146 | -0.1847 | 0.3037 | -0.2754 | 0.2924 | -0.3334 | 0.3569 | | 147 | -0.1759 | 0.3729 | 0.2739 | 0.4230 | 0.0996 | 0.3162 | | 148 | -0.0808 | 0.2286 | -0.3258 | 0.1988 | -0.1562 | 0.3195 | | 149 | -0.1417 | 0.2586 | -0.2767 | 0.2569 | -0.3610 | 0.2718 | | 150 | -0.0342 | 0.1942 | 0.0059 | 0.1987 | -0.1397 | 0.3010 | APPENDIX F: DOCUMENTATION OF CUT SCORE EQUATING PROCEDURE, SAS PROGRAM, AND TABLES OF CUT SCORES FOR 17 AND 150 JOB FAMILIES ## Cut Score Equating Procedure Proposed MOS-specific cut scores using alternative composites based on the 17 and 150 job family configuration were computed to be "equivalent" to existing cut scores under the existing LSE composites based on the 9 job family. By "equivalent" we mean that accessions for a given MOS based on the alternative composite and proposed cut score for the MOS will have the same mean predicted performance (MPP) as accessions based on the current composite and existing cut score for the same MOS. Generally, varying criterion validities can be expected between the existing and alternative composites. When the alternative composite has higher validity compared to the existing composite, a cut score that is lower than the existing value can produce the same level of MPP. Thus, the benefit of improved composite validity is achieved through large pool of eligible applicants (i.e., higher selection ratio). When the alternative composite has lower validity, we can compensate for its lower predictive power by setting a higher cut score that will produce the same level of MPP. This is achieved at the expense of a smaller eligible pool of higher average quality applicants than the existing pool. These ideas underlie the cut score equating procedure describe below. Denote the current composite for the mth MOS by X_o , with validity R_o and cut score currently set at C_o , and the alternative composite by X_n , with validity R_n . Also denote the common mean and standard deviation under the current and alternative composites (using 9, 17 or 150 job families) by constants $\mu_x = 100$ and $\sigma_x = 20$. Using these notations the MPP under the current and alternative composites and cut scores can be written as $$MPP_o = R_o \times \left(\frac{\mu_{X > C_o} - \mu_x}{\sigma_x}\right)$$ $$MPP_n = R_n \times \left(\frac{\mu_{X > C_n} - \mu_x}{\sigma_x}\right)$$ The terms inside the parentheses are simply the truncated mean of the composite above the respective cut scores in standardized form. Under the equivalent cut score condition, we have MPP_n equals MPP_o , where the latter is a known value and the former involves the unknown cut score C_n of interest. For this equality to be useful in solving for the equivalent alternative cut score, first we need to expand the truncated means of the composites X_o and X_n in the MPP expressions above as function of the composite mean and variance. Assuming a normal distribution for the composite in the applicant population and using standard mathematical results (e.g., Greene 1997), we obtain $$\mu_{X>C_o} = \mu_x + \sigma_x \times \lambda \left(\frac{C_o - \mu_x}{\sigma_x} \right)$$ $$\mu_{X>C_n} = \mu_x + \sigma_x \times \lambda \left(\frac{C_n - \mu_x}{\sigma_x} \right)$$ The "hazard" function λ is given by the expression below in terms of the standard normal density $\phi(z)$ and cumulative distribution $\Phi(z)$. $$\lambda(z) = \frac{\phi(z)}{1 - \Phi(z)}$$ Setting MPP under current and alternative composites and cut scores equal, and after some algebraic manipulations to separate known and unknown terms on either side of the equation, we obtain $$\left(\frac{R_o}{R_n}\right) \lambda \left(\frac{C_o - \mu_x}{\sigma_x}\right) = \lambda \left(\frac{C_n - \mu_x}{\sigma_x}\right)$$ Thus, to obtain the unknown equivalent cut score Cn, we solve for the zero of the non-linear equation $$0 = \lambda \left(\frac{C_n - \mu_x}{\sigma_x} \right) - L$$ where the constant L is simply the known value of the entire expression on the left-hand side of the preceding equality relationship. The solution to this problem was carried out using the Newton iterative method. The SAS program implementation of the entire cutscore equating procedure appears
on the next page. ``` Data for Input to Cut Score Equating Problem MOS-JF-CutScore Configuration: (1) mos = MOS ID (2) mosnumid = numeric ID (1, 2, ..., 155) (3) jf0103_9 jf0103_17 jf0103_150 = numerice ID for JF9, JF17, and JF150 as of JAN03 (4) c0 = cut score based on JF9 ocmposite Input Data to Cut Score Equating Problem: (1) zc0 = standardized cut score on JF9 (2) q0 = selection ration based on c0 and JF9 composite (1-probnorm(zc0)) (3) r0 = validity of JF9 composite (4) pp0 = predicted performance based on c0 and JF9 composite of MOS (5) r1 = validity of JF17 composite Output Data from Cut Score Equating Problem: (6) zcl = standardized cut score on JF17 composite (7) ql = selection ratio on JF17 composite and cut score (8) cl = cut score on JF17 composite that gives the same predicted performance Cut Score Equating Calculations NOTE: MOS in JAN03 file that not found in the SQT data are excluded. The ASVAB validities for these MOS are not available. %let dataMosCsConfig=lcs.mosCurCS; %let dataRXY155=lvalid.YouthValid; %let dataRXY9=lvalid.JF9YouthValid; %macro CutScoreEquate(dataRXY17, dataYouthCov, dataCSsoln, AltNumJF); %let PI=3.14159265; proc iml; Newton procedure for solving root of LAMBDA function start F LAMBDA(z); \frac{-}{\text{phiz}} = \exp(0.5*(-z\#\#2))/\text{sqrt}(2*\&PI); \quad \text{lambda} = \frac{\text{phiz}}{(1-\text{probnorm}(z))}; return(lambda); finish F_LAMBDA; start DF LAMBDA(z); phiz = exp(0.5*(-z##2))/sqrt(2*&PI); dphiz = -z*phiz; pnormz = probnorm(z); dlambda = (dphiz*(1-pnormz) + phiz##2) / (1-pnormz)##2; return(dlambda); finish DF LAMBDA; start SOLVE LAMBDA(lambdaConstant,initZ,epsZ, maxIter,opt); if (opt[1]) then print lambdaConstant[label="lambdaConstant" format=10.8],initZ[label="initZ" format=10.8]; ``` ``` z0=initZ; minDiff=epsZ; zDiff=1; maxiter=20; do iter=1 to maxiter while(zDiff>minDiff); z1 = z0 - (F LAMBDA(z0)-lambdaConstant)/DF LAMBDA(z0); zDiff = abs(z1-z0); z0 = z1; if (opt[2]) then print iter[label="iter" format=3.0] z0[label="ZSOLN" format=10.8] zDiff[label="zDiff" format=10.8]; end; return(z0); finish SOLVE LAMBDA; /* Testing Code zcSOLN = 1.987654; lambdaLHS = F LAMBDA(zcSOLN); zcSolved = SOLVE LAMBDA(lambdaLHS, 0, 1e-6, 20); print zcSolved[label="zcSolved" format=10.8]; /****************************** Read MOS-JF-CutScore Configuration Data ********************** use &dataMosCsConfig; read all var{mosnumid} into mosNumID; read all var{jf0103_9} into JF9; read all var{cutscore} into JF9CS; read all var{jf0103 &AltNumJF} into JFalt; close &dataMosCsConfig; *print mosNumID JF9 JFalt JF9CS; /***************************** Read MOS155, JF9, JFalt Youth ASVAB validities, and Youth ASVAB covariance ************************** TestNames = {GS AR AS MK MC EI VE}; use &dataRXY155; read all var(TestNames) into rxy155; close &dataRXY155; use &dataRXY9; read all var(TestNames) into rxy9; close &dataRXY9; use &dataRXY17; read all var(TestNames) into rxy17; close &dataRXY17; use &dataYouthCov; read all var(TestNames) where(names?TestNames) into cxxYouth; close &dataYouthCov; *print rxy155 rxy9 rxy17 rxxYouth; ``` ``` Quantities for Current JF9 composite that are available or readily computed: (1) zc0 = standardized cut score on JF9 (2) q0 = selection ration based on c0 and JF9 composite (1-probnorm(zc0)) (3) r0 = validity of JF9 composite (4) pp0 = predicted performance based on c0 and JF9 composite of MOS Quantities for "New" JFalt composite that are available or readily computed: Known quantities from "new" JFalt Composite: (5) r1 = validity of JFalt composite Quantities for "New" JFalt composite that are caculated through cut score equating: (6) zcl = standardized cut score on JFalt composite (7) q1 = selection ratio on JFalt composite and cut score (8) c1 = cut score on JFalt composite that gives the same predicted performance meanComp=100; stdComp=20; stdXX = sqrt(vecdiag(cxxYouth)); rxxYouth = diag(1/stdXX)*cxxYouth*diag(1/stdXX); numMos = nrow(mosNumID); zc0=repeat(0,numMos); q0=repeat(0,numMos); r0=repeat(0,numMos); pp0=repeat(0,numMos); zcl=repeat(0, numMos); ql=repeat(0, numMos); rl=repeat(0, numMos); JFaltCS=repeat(0,numMos); do idxMos=1 to numMos; zc0[idxMos] = (JF9CS[idxMos]-meanComp)/stdComp; q0[idxMos] = 1 - probnorm(zc0[idxMos]); r0[idxMos] = sqrt(rxy155[idxMos,]*inv(rxxYouth)*t(rxy9[JF9[idxMos],])); pp0[idxMos] = r0[idxMos]*(meanComp + stdComp*F_LAMBDA(zc0[idxMos])); r1[idxMos] = sqrt(rxy155[idxMos,]*inv(rxxYouth)*t(rxy17[JFalt[idxMos],])); lambdaLHS = (r0[idxMos]/r1[idxMos])*F_LAMBDA(zc0[idxMos]); zc1[idxMos] = SOLVE_LAMBDA(lambdaLHS, zc0[idxMos], le-6, 20, {1 1}); q1[idxMos] = 1 - probnorm(zc1[idxMos]); JFaltCS[idxMos] = meanComp + stdComp*zcl[idxMos]; end; matOut = mosNumID || JF9CS || zc0 || q0 || r0 || r1 || zc1 || q1 || JFaltCS; create &dataCSsoln var{mosNumID JF9CS zc0 q0 r0 r1 zc1 q1 JF&AltNumJF.CS}; append from matOut; close &dataCSsoln; quit; run; %mend; options mprint=1; %CutScoreEquate(lvalid.JF17YouthValid,lvalid.PopCovYouth,lcs.csSolnFixPP_JF17 %CutScoreEquate(lvalid.Jf150youthvalid,lvalid.PopCovYouth,lcs.csSolnFixPP_JF1 50,150); ``` Table 1 New and Old Cut Scores and Qualification Rates by MOS for 17 Job Families | | | | | | | 704 | | JF17CS | |-----|-------------|-------|-------------|-------------|-------------|---------------|-------------|-------------| | MOS | JF9CS | ZC0 | Q0 | R0 | R1 | ZC1 | Q1 | | | 1 | 87 | -0.65 | 0.742153889 | 0.528374924 | 0.50900736 | -0.615296654 | 0.730820587 | 87.69406692 | | 2 | 87 | -0.65 | 0.742153889 | 0.602825356 | 0.580085098 | -0.614256995 | 0.730477242 | 87.71486011 | | 3 | 87 | -0.65 | 0.742153889 | 0.590782909 | 0.568950082 | -0.615003971 | 0.730723951 | 87.69992059 | | 4 | 87 | -0.65 | 0.742153889 | 0.540846301 | 0.520561268 | -0.614468113 | 0.730546981 | 87.71063775 | | 5 | 87 | -0.65 | 0.742153889 | 0.593138316 | 0.630243661 | -0.705168449 | 0.759647293 | 85.89663103 | | 6 | 87 | -0.65 | 0.742153889 | 0.59534116 | 0.632041602 | -0.704398351 | 0.759407634 | 85.91203298 | | 8 | 91 | -0.45 | 0.67364478 | 0.624690167 | 0.624690167 | -0.45 | 0.67364478 | 91 | | 9 | 91 | -0.45 | 0.67364478 | 0.569657011 | 0.569657011 | -0.45 | 0.67364478 | 91 | | 10 | 91 | -0.45 | 0.67364478 | 0.66029159 | 0.66029159 | -0.45 | 0.67364478 | 91 | | 11 | 91 | -0.45 | 0.67364478 | 0.662381536 | 0.662381536 | -0.45 | 0.67364478 | 91 | | 12 | 95 | -0.25 | 0.598706326 | 0.663324105 | 0.663324105 | -0.25 | 0.598706326 | 95 | | 14 | 98 | -0.1 | 0.539827837 | 0.648680415 | 0.648680415 | -0.1 | 0.539827837 | 98 | | 22 | 87 | -0.65 | 0.742153889 | 0.605869684 | 0.643843124 | -0.705268283 | 0.759678353 | 85.89463434 | | 24 | 87 | -0.65 | 0.742153889 | 0.620224189 | 0.66069355 | -0.707436999 | 0.760352524 | 85.85126002 | | 26 | 92 | -0.4 | 0.655421742 | 0.689912396 | 0.704544844 | -0.421706029 | 0.663380199 | 91.56587941 | | 29 | 102 | 0.1 | 0.460172163 | 0.5921857 | 0.590830448 | 0.103006391 | 0.458978949 | 102.0601278 | | 33 | 98 | -0.1 | 0.539827837 | 0.669540892 | 0.669540892 | -0.1 | 0.539827837 | 98 | | 35 | 89 | -0.55 | 0.708840313 | 0.610008827 | 0.604585071 | -0.541342954 | 0.705864391 | 89.17314091 | | 37 | 107 | 0.35 | 0.363169349 | 0.701824913 | 0.70111151 | 0.351488998 | 0.362610762 | 107.02978 | | 39 | 98 | -0.1 | 0.539827837 | 0.62863297 | 0.62863297 | -0.1 | 0.539827837 | 98 | | 40 | 116 | 0.8 | 0.211855399 | 0.665774129 | 0.663984154 | | 0.21048221 | 116.0949841 | | 42 | 102 | 0.1 | 0.460172163 | 0.667514629 | 0.678873927 | 0.077982631 | 0.468920935 | 101.5596526 | | 43 | 107 | 0.35 | 0.363169349 | 0.668178174 | 0.678647341 | 0.327356329 | 0.371699196 | 106.5471266 | | 44 | 102 | 0.1 | 0.460172163 | 0.685673394 | 0.694533268 | | 0.466834992 | 101.6645667 | | 45 | 98 | -0.1 | 0.539827837 | 0.647524571 | 0.657463354 | -0.118158605 | 0.547029006 | 97.6368279 | | 48 | 88 | -0.6 | 0.725746882 | 0.72296745 | 0.756598437 | -0.642488143 | 0.739721857 | 87.15023714 | | 49 | | -0.15 | 0.559617692 | 0.735289835 | 0.769205125 | -0.202108333 | 0.580083983 | 95.95783334 | | 50 | | -0.6 | 0.725746882 | 0.600596715 | 0.628873893 | -0.642986236 | 0.739883484 | 87.14027529 | | 51 | | -0.35 | 0.636830651 | 0.640425362 | 0.672029756 | -0.400670342 | 0.655668575 | 91.98659317 | | 52 | | -0.15 | | 0.694022416 | 0.690916029 | -0.144746289 | 0.557544405 | 97.10507422 | | 53 | | -0.15 | 0.559617692 | 0.71979739 | 0.754128421 | -0.203820078 | | 95.92359843 | | 56 | | -0.35 | 0.636830651 | 0.735260276 | 0.770509576 | -0.399274616 | | 92.01450767 | | 58 | 88 | -0.6 | 0.725746882 | 0.701389192 | 0.670573296 | -0.557137068 | 0.711283108 | 88.85725864 | | 59 | | -0.6 | 0.725746882 | 0.686933742 | 0.657246038 | -0.557860406 | 0.711530145 | 88.84279188 | | 60 | | + | 0.725746882 | 0.656507343 | 0.627799471 | -0.557346082 | | | | 61 | | | | 0.728627437 | 0.721701283 | -0.33980615 | 0.632998742 | | | 62 | | | 0.460172163 | | | | | | | 63 | | | | | 0.712658695 | -0.204139466 | | | | 64 | | + | | | 0.743268433 | -0.204220618 | | | | 65 | | | | 0.746809578 | 0.76818708 | -0.42913755 | | | | 66 | | 4 | | | 0.646312705 | | | | | 67 | | | | | 0.69259301 | 0.262882774 | 0.396320467 | 105.2576555 | | 70 | | 4 | | | 0.693833377 | | | | | 71 | | | | 0.740144864 | 0.707759246 | -0.557318261 | 0.711344999 | 88.85363479 | | | | | | | | IE Lough, 7CC | 04 - 1 - 1' | J 01J A A | Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1 = Validity of 17 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification Rate Using New Cut Score; JF17CS = New AA Cut Score (17 JF Level). Table 1 (cont'd) New and Old Cut Scores and Qualification Rates by MOS for 17 Job Families | MOS | JF9CS | ZC0 | Q0 | R0 | R1 | ZC1 | Q1 | JF17CS | |-----|-------|-------|----------------------------|----------------------------|----------------------------|------------------
----------------------------|----------------------------| | 72 | 88 | -0.6 | 0.725746882 | 0.705386736 | 0.674175432 | -0.556822855 | 0.711175766 | 88.86354291 | | 73 | 88 | -0.6 | 0.725746882 | 0.641538019 | 0.614321678 | -0.558659727 | 0.711803015 | 88.82680545 | | 74 | .87 | -0.65 | 0.742153889 | 0.713812452 | 0.713335988 | -0.649384606 | 0.741955094 | 87.01230788 | | 75 | 97 | -0.15 | 0.559617692 | 0.764372563 | 0.764445456 | -0.15011154 | 0.559661692 | 96.9977692 | | 76 | 97 | -0.15 | 0.559617692 | 0.792072668 | 0.791226469 | -0.148749321 | 0.559124279 | 97.02501359 | | 77 | 97 | -0.15 | 0.559617692 | 0.750551996 | 0.750970597 | -0.150652098 | 0.559874919 | 96.98695804 | | 78 | 87 | -0.65 | 0.742153889 | 0.676698726 | 0.678247461 | -0.652105523 | 0.742833449 | 86.95788953 | | 79 | 87 | -0.65 | 0.742153889 | 0.64366095 | 0.645477037 | -0.652594721 | 0.742991205 | 86.94810558 | | 81 | . 97 | -0.15 | 0.559617692 | 0.728881979 | 0.726486185 | -0.146145427 | 0.558096707 | 97.07709145 | | 82 | 102 | 0.1 | 0.460172163 | 0.69485919 | 0.693992438 | 0.101637274 | 0.459522296 | 102.0327455 | | 83 | 87 | -0.65 | 0.742153889 | 0.750439786 | 0.749837689 | -0.649260225 | 0.741914905 | 87.01479551 | | 84 | 97 | -0.15 | 0.559617692 | 0.691086211 | 0.690103098 | -0.148334177 | 0.558960478 | 97.03331646 | | 85 | 102 | 0.1 | 0.460172163 | 0.701452311 | 0.729104488 | 0.049870208 | 0.480112909 | 100.9974042 | | 86 | 97 | -0.15 | 0.559617692 | 0.70697104 | 0.703505772 | -0.14424477 | 0.557346405 | 97.1151046 | | 87 | 102 | 0.1 | 0.460172163 | 0.717587198 | 0.707256229 | 0.119096867 | 0.452599306 | 102.3819373 | | 88 | 102 | 0.1 | 0.460172163 | 0.627235496 | 0.62447777 | 0.105785404 | 0.457876309 | 102.1157081 | | 89 | 102 | 0.1 | 0.460172163 | 0.711505261 | 0.71170251 | 0.099636559 | 0.460316434 | 101.9927312 | | 90 | 102 | 0.1 | 0.460172163 | 0.672302894 | 0.672714302 | 0.099197971 | 0.460490543 | 101.9839594 | | 91 | 102 | 0.1 | 0.460172163 | 0.738440547 | 0.743938095 | 0.09029515 | 0.464026337 | 101.805903 | | 92 | 102 | 0.1 | 0.460172163 | 0.784300107 | 0.782027342 | 0.10380861 | 0.458660617 | 102.0761722 | | 93 | 102 | 0.1 | 0.460172163 | 0.784078298 | 0.786851176 | 0.095375689 | 0.462008213 | 101.9075138 | | 94 | 102 | 0.1 | 0.460172163 | 0.71409059 | 0.729673218 | 0.071872091 | 0.47135185 | 101.4374418 | | 95 | 93 | -0.35 | 0.636830651 | 0.721649898 | 0.739391879 | -0.375701582 | 0.646430619 | 92.48596837 | | 97 | 93 | -0.35 | 0.636830651 | 0.637569126 | 0.65821653 | -0.383662211 | 0.649385588 | 92.32675579 | | 99 | 107 | 0.35 | 0.363169349 | 0.423410229 | 0.411633457 | 0.391656386 | 0.34765606 | 107.8331277 | | 101 | 92 | -0.4 | 0.655421742 | 0.698706419 | 0.699100407 | -0.400585981 | 0.655637516 | 91.98828038 | | 105 | 92 | -0.4 | 0.655421742 | 0.65003742 | 0.650371295 | -0.400533773 | 0.655618293 | 91.98932455
103.0336222 | | 106 | 103 | 0.15 | 0.440382308 | 0.664871044 | 0.66403832 | 0.15168111 | 0.439719228 | | | 107 | 96 | -0.2 | 0.579259709 | 0.668700721 | 0.678896435 | -0.217222651 | 0.585982583 | 95.65554698
92.33892013 | | 108 | 92 | -0.4 | 0.655421742 | 0.65279443 | 0.642282328 | -0.383053994 | 0.649160135 | 103.0785335 | | 112 | 103 | 0.15 | 0.440382308 | 0.689781704 | 0.687766474 | 0.153926677 | 0.438833775 | 87.93741565 | | 117 | 88 | -0.6 | 0.725746882 | 0.686601595 | 0.688882708 | -0.603129218 | 0.726788635 | 88.87568455 | | 118 | 88 | -0.6 | 0.725746882 | | 0.675890021 | -0.556215773 | 0.710968321
0.779772771 | 84.57147962 | | 119 | 85 | -0.75 | 0.773372648 | 0.658118465 | 0.674468889 | -0.771426019 | 0.6677257 | 91.32716468 | | 120 | 92 | -0.4 | 0.655421742 | 0.666742561 | 0.688851107 | -0.433641766 | 0.711596528 | 88.83890339 | | 121 | | | | 0.733410493 | 0.701855772 | -0.55605465 | 0.773372648 | 85 | | 122 | | | 0.773372648 | | 0.709052039 | -0.141960302 | 0.556444319 | 97.16079395 | | 123 | | -0.15 | | 0.650034124 | 0.645589902
0.676987953 | 0.448751292 | 0.32680554 | 108.9750258 | | 124 | | 0.35 | | 0.723223681 | 0.688546032 | -0.347932303 | | 93.04135393 | | 125 | | -0.4 | 0.655421742 | 0.723462278
0.731579645 | 0.692634942 | -0.342343802 | 0.633953912 | 93.15312396 | | 126 | | -0.4 | 0.655421742 | | 0.692034942 | 0.429741524 | 0.333691837 | 108.5948305 | | 129 | | 0.35 | | 0.703489738 | 0.703489738 | -0.25 | | 95 | | 130 | | ., | 0.598706326 | | 0.703409730 | | 0.33350056 | 108.6053485 | | 131 | 107 | 0.35 | 0.363169349
0.655421742 | | 0.627934561 | | 0.634923752 | | | 132 | 92 | -0.4 | | | | F L evel): 7CO = | | | Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1 = Validity of 17 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification Rate Using New Cut Score; JF17CS = New AA Cut Score (17 JF Level). Table 1 (cont'd) New and Old Cut Scores and Qualification Rates by MOS for 17 Job Families | MOS | JF9CS | ZC0 | Q0 | R0 | R1 | ZC1 | Q1 | JF17CS | |-----|-------|-------|-------------|-------------|-------------|--------------|-------------|-------------| | 133 | 96 | -0.2 | 0.579259709 | 0.703459776 | 0.668330344 | -0.140644133 | 0.555924459 | 97.18711734 | | 134 | 102 | 0.1 | 0.460172163 | 0.540006869 | 0.505735404 | 0.187672118 | 0.425566844 | 103.7534424 | | 135 | 92 | -0.4 | 0.655421742 | 0.678738208 | 0.639929164 | -0.33787774 | 0.632272338 | 93.24244521 | | 137 | 92 | -0.4 | 0.655421742 | 0.723581145 | 0.715971111 | -0.38897919 | 0.65135423 | 92.22041621 | | 138 | 85 | -0.75 | 0.773372648 | 0.697797652 | 0.697797652 | -0.75 | 0.773372648 | 85 | | 139 | 88 | -0.6 | 0.725746882 | 0.674647315 | 0.64509594 | -0.557270966 | 0.711328845 | 88.85458069 | | 140 | 88 | -0.6 | 0.725746882 | 0.667530862 | 0.639479244 | -0.559062609 | 0.711940504 | 88.81874782 | | 141 | 92 | -0.4 | 0.655421742 | 0.721646975 | 0.706723333 | -0.378161655 | 0.647344746 | 92.43676689 | | 142 | 96 | -0.2 | 0.579259709 | 0.737485532 | 0.757922758 | -0.231011139 | 0.591346926 | 95.37977722 | | 143 | 93 | -0.35 | 0.636830651 | 0.721584522 | 0.718489973 | -0.345419177 | 0.635110369 | 93.09161645 | | 144 | 92 | -0.4 | 0.655421742 | 0.704051744 | 0.722670289 | -0.42696104 | 0.665296148 | 91.46077919 | | 145 | 92 | -0.4 | 0.655421742 | 0.68449826 | 0.702443632 | -0.426733006 | 0.665213096 | 91.46533987 | | 146 | 96 | -0.2 | 0.579259709 | 0.696044518 | 0.715326945 | -0.231001086 | 0.591343021 | 95.37997827 | | 147 | 102 | 0.1 | 0.460172163 | 0.633256782 | 0.6489369 | 0.068155869 | 0.472830779 | 101.3631174 | | 148 | 102 | 0.1 | 0.460172163 | 0.63754039 | 0.658876113 | 0.057249181 | 0.477173351 | 101.1449836 | | 149 | 93 | -0.35 | 0.636830651 | 0.657476775 | 0.658242868 | -0.351239503 | 0.637295662 | 92.97520993 | | 150 | 102 | 0.1 | 0.460172163 | 0.697719236 | 0.725191857 | 0.049927471 | 0.480090093 | 100.9985494 | | 151 | 92 | -0.4 | 0.655421742 | 0.713548551 | 0.740726056 | -0.438504926 | 0.66948985 | 91.22990148 | | 152 | 102 | 0.1 | 0.460172163 | 0.704493117 | 0.729707014 | 0.054361242 | 0.478323679 | 101.0872248 | | 154 | 92 | -0.4 | 0.655421742 | 0.691700773 | 0.717427129 | -0.437624481 | 0.669170739 | 91.24751038 | Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1 = Validity of 17 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification Rate Using New Cut Score; JF17CS = New AA Cut Score (17 JF Level). Table 2 New and Old Cut Scores and Qualification Rates by MOS for 150 Job Families | MOS | JF9CS | ZC0 | Q0 | R0 | R1 | ZC1 | Q1 | JF150CS | |----------|-------------|-------|-------------|-------------|------------------|-----------------|----------------|-------------| | 1 | 87 | -0.65 | 0.742153889 | 0.528374924 | 0.4752681 | -0.549999321 | 0.70884008 | 89.00001359 | | | 87 | -0.65 | 0.742153889 | 0.602825356 | 0.59534875 | -0.638467207 | 0.738415203 | 87.23065586 | | 3 | 87 | -0.65 | 0.742153889 | 0.590782909 | 0.582748295 | -0.63734273 | 0.738049188 | 87.2531454 | | 4 | 87 | -0.65 | 0.742153889 | 0.540846301 | 0.49605518 | -0.568756024 | 0.715239139 | 88.62487953 | | 5 | 87 | -0.65 | 0.742153889 | 0.593138316 | | -0.635025874 | 0.73729423 | 87.29948252 | | 6 | 87 | -0.65 | 0.742153889 | 0.59534116 | 0.593876042 | -0.647728155 | 0.741419605 | 87.0454369 | | 8 | 91 | -0.45 | 0.67364478 | 0.624690167 | 0.583837466 | -0.380196228 | 0.648100121 | 92.39607544 | | 9 | 91 | -0.45 | 0.67364478 | 0.569657011 | 0.569932557 | -0.450490801 | 0.673821707 | 90.99018398 | | 10 | 91 | -0.45 | 0.67364478 | 0.66029159 | 0.649234221 | -0.432787255 | 0.667415333 | 91.34425489 | | 11 | 91 | -0.45 | 0.67364478 | 0.662381536 | 0.653318653 | -0.435969035 | 0.668570402 | 91.2806193 | | 12 | 95 | -0.25 | 0.598706326 | 0.663324105 | 0.60326404 | -0.141336758 | 0.556198044 | 97.17326484 | | 14 | 98 | -0.1 | 0.539827837 | 0.648680415 | 0.580543473 | 0.037074543 | 0.485212785 | 100.7414909 | | 22 | 87 | -0.65 | 0.742153889 | 0.605869684 | 0.608148781 | -0.653457006 | 0.743269151 | 86.93085989 | | 24 | 87 | -0.65 | 0.742153889 | 0.620224189 | 0.634552351 | -0.670939019 | 0.748870311 | 86.58121961 | | 26 | 92 | -0.4 | 0.655421742 | 0.689912396 | 0.613927381 | -0.275045676 | 0.608359427 | 94.49908647 | | 29 | 102 | 0.1 | 0.460172163 | 0.5921857 | 0.497792982 | 0.340002407 | 0.366927357 | 106.8000481 | | 33 | 98 | -0.1 | 0.539827837 | 0.669540892 | 0.617647499 | -0.001212665 | 0.500483783 | 99.97574669 | | 35 | 89 | -0.55 | 0.708840313 | 0.610008827 | 0.547886292 | -0.443413884 | 0.671266802 | 91.13172231 | | 37 | 107 | 0.35 | 0.363169349 | 0.701824913 | 0.582664361 | 0.639346246 | 0.261298855 | 112.7869249 | | 39 | 98 | -0.1 | 0.539827837 | 0.62863297 | 0.589447296 | -0.021550936 | 0.508596914 | 99.56898129 | | 40 | 116 | 0.8 | 0.211855399 | 0.665774129 | 0.562044096 | 1.117181308 | 0.131958405 | 122.3436262 | |
42 | 102 | 0.1 | 0.460172163 | 0.667514629 | 0.600896509 | 0.242279127 | 0.404281943 | 104.8455825 | | 43 | 107 | 0.35 | 0.363169349 | 0.668178174 | 0.568036453 | 0.600490253 | 0.274089777 | 112.0098051 | | 44 | 102 | 0.1 | 0.460172163 | 0.685673394 | 0.586686166 | 0.314314816 | 0.376640973 | 106.2862963 | | 45 | 98 | -0.1 | 0.539827837 | 0.647524571 | 0.570754226 | 0.056562875 | 0.477446704 | 101.1312575 | | 48 | 88 | -0.6 | 0.725746882 | 0.72296745 | 0.667234012 | -0.522832647 | 0.699454641 | 89.54334707 | | 49 | 97 | -0.15 | 0.559617692 | 0.735289835 | 0.672379244 | -0.042761147 | 0.517054032 | 99.14477707 | | 50 | 88 | -0.6 | 0.725746882 | 0.600596715 | 0.563205817 | -0.538401086 | 0.704849912 | 89.23197828 | | 51 | 93 | -0.35 | 0.636830651 | 0.640425362 | 0.546217486 | -0.173423593 | 0.568840759 | 96.53152813 | | 52 | 97 | -0.15 | 0.559617692 | 0.694022416 | 0.570228887 | 0.092882317 | 0.462998527 | 101.8576463 | | 53 | 97 | -0.15 | 0.559617692 | 0.71979739 | 0.661440112 | -0.048765357 | 0.519446855 | 99.02469287 | | 56 | 93 | -0.35 | 0.636830651 | 0.735260276 | 0.660442092 | -0.232534139 | 0.591938413 | 95.34931722 | | 58 | 88 | -0.6 | 0.725746882 | 0.701389192 | 0.625608476 | -0.489125181 | 0.687623462 | 90.21749639 | | 59 | 88 | -0.6 | 0.725746882 | 0.686933742 | 0.620497789 | -0.50166076 | 0.692046914 | 89.9667848 | | 60 | 88 | -0.6 | 0.725746882 | 0.656507343 | 0.543248141 | -0.41301169 | 0.660200975 | 91.73976621 | | 61 | 93 | | 0.636830651 | 0.728627437 | 0.6627156 | -0.246554585 | 0.597373522 | 95.0689083 | | 62 | | 0.1 | 0.460172163 | 0.60610754 | 0.545345245 | 0.242977269 | | 104.8595454 | | 63 | | -0.15 | 0.559617692 | | 0.60253374 | | | 99.9271247 | | 64 | | -0.15 | 0.559617692 | | 0.647485687 | -0.04082538 | | 99.1834924 | | 65 | | -0.4 | 0.655421742 | | 0.71585551 | -0.355522 | | 92.88955999 | | 66 | | -0.2 | | 0.664528937 | 0.60542832 | -0.090832655 | | 98.18334689 | | 67 | 104 | 0.2 | 0.420740291 | | 0.637454212 | 0.3828734 | | 107.657468 | | 70 | | -0.65 | 0.742153889 | 0.70000591 | 0.656400152 | -0.589860491 | 0.722357908 | 88.20279019 | | 71 | 88 | -0.6 | 0.725746882 | | | | | | | <u> </u> | 1400 | | | 000 011 4 4 | Cost Coope (O. I | F Level): ZCO = | - Standardized | | Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1 = Validity of 150 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification Rate Using New Cut Score; JF150CS = New AA Cut Score (150 JF Level). Table 2 (cont'd) New and Old Cut Scores and Qualification Rates by MOS for 150 Job Families | | JF9CS | ZC0 | Q0 ~ | R0 | R1 | ZC1 | Q1 | JF150CS | |-----|-------|-------|-------------|-------------|-------------|---------------------------------|-------------|-------------| | 72 | 88 | -0.6 | 0.725746882 | | 0.640135999 | | 0.69366293 | 89.87480002 | | 73 | 88 | -0.6 | 0.725746882 | | 0.585418578 | -0.511710424 | 0.695573155 | 89.76579151 | | 74 | 87 | -0.65 | 0.742153889 | 0.713812452 | 0.664743539 | -0.583302578 | 0.720155186 | 88.33394843 | | 75 | 97 | -0.15 | 0.559617692 | 0.764372563 | 0.655285599 | 0.038037174 | 0.484829021 | 100.7607435 | | 76 | 97 | -0.15 | 0.559617692 | 0.792072668 | 0.702993657 | -0.005745797 | 0.502292229 | 99.88508405 | | 77 | 97 | -0.15 | 0.559617692 | 0.750551996 | 0.638492143 | 0.047897481 | 0.480898974 | 100.9579496 | | 78 | 87 | -0.65 | 0.742153889 | 0.676698726 | 0.577052888 | -0.497725101 | 0.690661093 | 90.04549799 | | 79 | 87 | -0.65 | 0.742153889 | 0.64366095 | 0.554044258 | -0.506994237 | 0.693920569 | 89.86011526 | | 81 | 97 | -0.15 | 0.559617692 | 0.728881979 | 0.62497767 | 0.037797144 | 0.484924711 | 100.7559429 | | 82 | 102 | 0.1 | 0.460172163 | 0.69485919 | 0.586903212 | 0.333037117 | 0.369553133 | 106.6607423 | | 83 | 87 | -0.65 | 0.742153889 | | 0.705636543 | -0.592476656 | 0.723234276 | 88.15046688 | | 84 | 97 | -0.15 | 0.559617692 | 0.691086211 | 0.601728946 | 0.018326624 | 0.492689144 | 100.3665325 | | 85 | 102 | 0.1 | 0.460172163 | 0.701452311 | 0.631130181 | 0.242980631 | 0.404010201 | 104.8596126 | | 86 | 97 | -0.15 | 0.559617692 | 0.70697104 | 0.61064814 | 0.028474678 | 0.488641782 | 100.5694936 | | 87 | 102 | 0.1 | 0.460172163 | 0.717587198 | 0.619901888 | 0.300551548 | 0.381878242 | 106.011031 | | 88 | 102 | 0.1 | 0.460172163 | 0.627235496 | 0.538203859 | 0.310244414 | 0.378187549 | 106.2048883 | | 89 | 102 | 0.1 | 0.460172163 | 0.711505261 | 0.599025674 | 0.33773355 | 0.367781995 | 106.754671 | | 90 | 102 | 0.1 | 0.460172163 | 0.672302894 | 0.578822271 | 0.305399418 | 0.380030982 | 106.1079884 | | 91 | 102 | 0.1 | 0.460172163 | 0.738440547 | 0.520344156 | 0.612226785 | 0.270193861 | 112.2445357 | | 92 | 102 | 0.1 | 0.460172163 | 0.784300107 | 0.649859209 | 0.361083378 | 0.359018559 | 107.2216676 | | 93 | | 0.1 | 0.460172163 | 0.784078298 | 0.674131718 | 0.307366949 | 0.379282041 | 106.147339 | | 94 | 102 | 0.1 | 0.460172163 | 0.71409059 | 0.650047849 | 0.226724563 | 0.410318963 | 104.5344913 | | 95 | 93 | -0.35 | 0.636830651 | 0.721649898 | 0.636957623 | -0.212721965 | 0.584228083 | 95.7455607 | | 97 | 93 | -0.35 | 0.636830651 | 0.637569126 | 0.587380383 | -0.260847518 | 0.602894951 | 94.78304965 | | 99 | 107 | 0.35 | 0.363169349 | 0.423410229 | 0.356023067 | 0.618407143 | 0.268153495 | 112.3681429 | | 101 | 92 | -0.4 | 0.655421742 | 0.698706419 | 0.59428135 | -0.224598824 | 0.58885431 | 95.50802353 | | 105 | 92 | -0.4 | 0.655421742 | 0.65003742 | | -0.220864184 | 0.587400907 | 95.58271633 | | 106 | 103 | 0.15 | 0.440382308 | 0.664871044 | | 0.346638438 | 0.364431483 | 106.9327688 | | 107 | 96 | -0.2 | 0.579259709 | 0.668700721 | | -0.004122272 | 0.501644544 | | | 108 | | -0.4 | 0.655421742 | 0.65279443 | | -0.267404109 | 0.605420982 | 94.65191783 | | 112 | | 0.15 | 0.440382308 | 0.689781704 | | 0.381790438 | 0.351308406 | 107.6358088 | | 117 | | -0.6 | 0.725746882 | 0.686601595 | | | 0.725557176 | 88.01138415 | | 118 | | -0.6 | | 0.707626076 | | <u> </u> | 0.675284946 | 90.90891924 | | 119 | | l | 0.773372648 | 0.658118465 | | | 0.708431241 | 89.02384872 | | 120 | | -0.4 | | 0.666742561 | | | | 93.20265535 | | 121 | | | | | | -0.407871695 | | 91.8425661 | | 122 | | | 0.773372648 | | | | 0.754863079 | | | 123 | | | 0.559617692 | 0.650034124 | | | 0.431993142 | | | 124 | A | | 0.363169349 | | | | 0.292870319 | | | 125 | | | 0.655421742 | | | | 0.602180751 | 94.82008442 | | 126 | | -0.4 | | | | | | | | 129 | | | | | | | 0.180859924 | | | 130 | | | | 0.703489738 | | <u> </u> | 0.540494281 | | | 131 | | | 0.363169349 | | | | 0.297658059 | | | 132 | | | 0.655421742 | | 0.602385987 | -0.300117834
F Level): ZCO = | 0.617956362 | | Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1 = Validity of 150 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification Rate Using New Cut Score; JF150CS = New AA Cut Score (150 JF Level). Table 2 (cont'd) New and Old Cut Scores and Qualification Rates by MOS for 150 Job Families | Then also one can been a suit guilliant | | | | | | | | | |---|-------|-------|-------------|-------------|-------------|--------------|-------------|-------------| | MOS | JF9CS | ZC0 | Q0 | R0 | R1 | ZC1 | Q1 | JF150CS | | 133 | 96 | -0.2 | 0.579259709 | 0.703459776 | 0.639431045 | -0.088078269 | 0.535092766 | 98.23843463 | | 134 | 102 | 0.1 | 0.460172163 | 0.540006869 | 0.467668426 | 0.296957005 | 0.383249667 | 105.9391401 | | 135 | 92 | -0.4 | 0.655421742 | 0.678738208 | 0.591156765 | -0.251231385 | 0.59918239 | 94.9753723 | | 137 | 92 | -0.4 | 0.655421742 | 0.723581145 | 0.65403854 | -0.292231207 | 0.614945073 | 94.15537587 | | 138 | 85 | -0.75 | 0.773372648 | 0.697797652 | 0.667701054 | -0.71093473 | 0.761437658 | 85.7813054 | | 139 | 88 | -0.6 | 0.725746882 | 0.674647315 | 0.603321784 | -0.491712326 | 0.688538638 | 90.16575348 | | 140 | 88 | -0.6 | 0.725746882 | 0.667530862 | 0.532245086 | -0.374310745 | 0.645913431 | 92.5137851 | | 141 | 92 | -0.4 | 0.655421742 | 0.721646975 | 0.621424046 | -0.238510865 | 0.594257555 | 95.2297827 | | 142 | 96 | -0.2 | 0.579259709 | 0.737485532 | 0.651422748 | -0.05330761 | 0.521256592 | 98.9338478 | | 143 | 93 | -0.35 | 0.636830651 | 0.721584522 | 0.652192158 | -0.239506072 | 0.594643406 | 95.20987857 | | 144 | 92 | -0.4 | 0.655421742 | 0.704051744 | 0.650429566 | -0.315982375 | 0.623992057 | 93.68035251 | | 145 | 1 ! | -0.4 | 0.655421742 | 0.68449826 | 0.612574471 | -0.281294117 | 0.610757589 | 94.37411766 | | 146 | | -0.2 | 0.579259709 | 0.696044518 | 0.596800715 | -0.016621562 | 0.506630739 | 99.66756876 | | 147 | 102 | 0.1 | 0.460172163 | 0.633256782 | 0.541478552 | 0.315267912 | 0.376279123 | 106.3053582 | | 148 | 4 | 0.1 | 0.460172163 | 0.63754039 | 0.590475826 | 0.202886347 | 0.419611933 | 104.0577269 | | | 4 | -0.35 | 0.636830651 | 0.657476775 | 0.604700706 | -0.258974552 | 0.602172562 | 94.82050897 | | 149 | 4 | 0.33 | 0.460172163 | 0.697719236 | 0.619541292 | 0.261492955 | 0.396856191 | 105.2298591 | | 150 | | -0.4 | 0.655421742 | 0.713548551 | 0.629789208 | -0.266005378 | 0.604882467 | 94.67989243 | | 151 | 92 | | 0.460172163 | 0.704493117 | 0.617336211 | 0.280199843 | 0.389662094 | 105.6039969 | | 152 | day | 0.1 | 0.460172103 | 0.691700773 | 0.629281011 | -0.299300219 | 0.617644506 | 94.01399561 | | 154 | 92 | -0.4 | U.000421742 | 0.081700773 | 0.023201011 | U.ZUUUUZTU | | | Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1 = Validity of 150 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification Rate Using New Cut Score; JF150CS = New AA Cut Score (150 JF Level).